
Package: covidregionaldata (via r-universe)
July 27, 2024

Title Subnational Data for COVID-19 Epidemiology

Version 0.9.3

Description An interface to subnational and national level COVID-19
data sourced from both official sources, such as Public Health
England in the UK, and from other COVID-19 data collections,
including the World Health Organisation (WHO), European Centre
for Disease Prevention and Control (ECDC), John Hopkins
University (JHU), Google Open Data and others. Designed to
streamline COVID-19 data extraction, cleaning, and processing
from a range of data sources in an open and transparent way.
This allows users to inspect and scrutinise the data, and tools
used to process it, at every step. For all countries supported,
data includes a daily time-series of cases. Wherever available
data is also provided for deaths, hospitalisations, and tests.
National level data are also supported using a range of
sources.

License MIT + file LICENSE

URL https://epiforecasts.io/covidregionaldata/,

https://github.com/epiforecasts/covidregionaldata/

BugReports https://github.com/epiforecasts/covidregionaldata/issues/

Depends R (>= 3.5.0)

Imports countrycode (>= 1.2.0), dplyr, httr, jsonlite, lifecycle,
lubridate, memoise, purrr, R6, readxl, rlang, stringr, tidyr
(>= 1.0.0), tidyselect, vroom, xml2

Suggests ggplot2, ggspatial, knitr, mockery, rmarkdown, RSocrata,
rvest, rworldmap, sf, spelling, testthat (>= 3.0.0), usethis

VignetteBuilder knitr

Config/testthat/edition 3

Config/Needs/website r-lib/pkgdown, amirmasoudabdol/preferably

Config/Needs/coverage covr

Encoding UTF-8

1

https://epiforecasts.io/covidregionaldata/
https://github.com/epiforecasts/covidregionaldata/
https://github.com/epiforecasts/covidregionaldata/issues/

2 Contents

Language en-gb

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.1.2

Repository https://epiforecasts.r-universe.dev

RemoteUrl https://github.com/epiforecasts/covidregionaldata

RemoteRef HEAD

RemoteSha bc7bc24761ccc8acbfcd9380553696eaf5ce524e

Contents
add_extra_na_cols . 3
all_country_data . 4
Belgium . 4
Brazil . 6
calculate_columns_from_existing_data . 8
Canada . 8
check_level . 10
Colombia . 10
colombia_codes . 12
complete_cumulative_columns . 12
CountryDataClass . 13
Covid19DataHub . 14
csv_reader . 16
Cuba . 17
DataClass . 18
download_excel . 23
ECDC . 24
Estonia . 25
expect_clean_cols . 27
expect_columns_contain_data . 27
expect_processed_cols . 28
fill_empty_dates_with_na . 28
France . 29
france_codes . 30
Germany . 31
get_available_datasets . 32
get_national_data . 33
get_regional_data . 35
glue_level . 37
Google . 37
India . 39
initialise_dataclass . 41
Italy . 43
JHU . 45

add_extra_na_cols 3

JHU_codes . 47
JRC . 47
json_reader . 49
Lithuania . 50
lithuania_codes . 54
make_github_workflow . 54
make_new_data_source . 55
message_verbose . 55
Mexico . 56
mexico_codes . 58
Netherlands . 58
process_internal . 60
region_dispatch . 61
reset_cache . 61
return_data . 62
run_default_processing_fns . 62
run_optional_processing_fns . 63
set_negative_values_to_zero . 63
SouthAfrica . 64
start_using_memoise . 65
stop_using_memoise . 65
Switzerland . 66
test_cleaning . 67
test_download . 68
test_download_JSON . 68
test_processing . 69
test_return . 69
totalise_data . 70
UK . 70
uk_codes . 75
USA . 75
vietnam_codes . 77
WHO . 77

Index 79

add_extra_na_cols Add extra columns filled with NA values to a dataset.

Description

Adds extra columns filled with NAs to a dataset. This ensures that all datasets from the covidre-
gionaldata package return datasets of the same underlying structure (i.e. same columns).

Usage

add_extra_na_cols(data)

4 Belgium

Arguments

data A data frame

Value

A tibble with relevant NA columns added

See Also

Compulsory processing functions calculate_columns_from_existing_data(), complete_cumulative_columns(),
fill_empty_dates_with_na()

all_country_data Table of available datasets along with level and other information.
Rendered from the individual R6 class objects included in this pack-
age.

Description

Available datasets

Usage

all_country_data

Format

An object of class tbl_df (inherits from tbl, data.frame) with 23 rows and 10 columns.

Value

A tibble of available datasets and related information.

Belgium Belgium Class for downloading, cleaning and processing notification
data

Description

Information for downloading, cleaning and processing COVID-19 region level 1 and 2 data for
Belgium.

Super class

covidregionaldata::DataClass -> Belgium

Belgium 5

Public fields

origin name of origin to fetch data for
supported_levels A list of supported levels.
supported_region_names A list of region names in order of level.
supported_region_codes A list of region codes in order of level. ISO 3166-2 codes are used

for both region and province levels in Belgium, and for provinces these are marked as being
iso_3166_2_province

common_data_urls List of named links to raw data that are common across levels.
level_data_urls List of named links to raw data specific to each level of regions. For Belgium,

there are only additional data for level 1 regions.
source_data_cols existing columns within the raw data
source_text Plain text description of the source of the data
source_url Website address for explanation/introduction of the data

Methods

Public methods:
• Belgium$set_region_codes()

• Belgium$download()

• Belgium$clean_level_1()

• Belgium$clean_level_2()

• Belgium$clone()

Method set_region_codes(): Set up a table of region codes for clean data
Usage:
Belgium$set_region_codes()

Method download(): Downloads data from source and (for Belgium) applies an initial data
patch.

Usage:
Belgium$download()

Method clean_level_1(): Region-level Data Cleaning
Usage:
Belgium$clean_level_1()

Method clean_level_2(): Province-level Data Cleaning
Usage:
Belgium$clean_level_2()

Method clone(): The objects of this class are cloneable with this method.
Usage:
Belgium$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

6 Brazil

Source

https://epistat.sciensano.be/Data/COVID19BE_CASES_AGESEX.csv

See Also

Subnational data sources Brazil, Canada, Colombia, Covid19DataHub, Cuba, Estonia, France,
Germany, Google, India, Italy, JHU, Lithuania, Mexico, Netherlands, SouthAfrica, Switzerland,
UK, USA

Examples

Not run:
region <- Belgium$new(verbose = TRUE, steps = TRUE, get = TRUE, level = "2")
region$return()

End(Not run)

Brazil Brazil Class for downloading, cleaning and processing notification
data

Description

Information for downloading, cleaning and processing COVID-19 region data for Brazil.

Data available on Github, curated by Wesley Cota: DOI 10.1590/SciELOPreprints.362

Super class

covidregionaldata::DataClass -> Brazil

Public fields

origin name of origin to fetch data for

supported_levels A list of supported levels.

supported_region_names A list of region names in order of level.

supported_region_codes A list of region codes in order of level.

common_data_urls List of named links to raw data. Data is available at the city level and is
aggregated to provide state data.

source_data_cols existing columns within the raw data

source_text Plain text description of the source of the data

source_url Website address for explanation/introduction of the data

https://epistat.sciensano.be/Data/COVID19BE_CASES_AGESEX.csv

Brazil 7

Methods

Public methods:
• Brazil$set_region_codes()

• Brazil$clean_common()

• Brazil$clean_level_1()

• Brazil$clean_level_2()

• Brazil$clone()

Method set_region_codes(): Set up a table of region codes for clean data

Usage:
Brazil$set_region_codes()

Method clean_common(): Common data cleaning for both levels

Usage:
Brazil$clean_common()

Method clean_level_1(): State Level Data Cleaning

Usage:
Brazil$clean_level_1()

Method clean_level_2(): City Level Data Cleaning

Usage:
Brazil$clean_level_2()

Method clone(): The objects of this class are cloneable with this method.

Usage:
Brazil$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Source

https://github.com/wcota/covid19br

See Also

Subnational data sources Belgium, Canada, Colombia, Covid19DataHub, Cuba, Estonia, France,
Germany, Google, India, Italy, JHU, Lithuania, Mexico, Netherlands, SouthAfrica, Switzerland,
UK, USA

Examples

Not run:
region <- Brazil$new(verbose = TRUE, steps = TRUE, get = TRUE)
region$return()

End(Not run)

https://github.com/wcota/covid19br

8 Canada

calculate_columns_from_existing_data

Cumulative counts from daily counts or daily counts from cumulative,
dependent on which columns already exist

Description

Checks which columns are missing (cumulative/daily counts) and if one is present and the other not
then calculates the second from the first.

Usage

calculate_columns_from_existing_data(data)

Arguments

data A data frame

Value

A data frame with extra columns if required

See Also

Compulsory processing functions add_extra_na_cols(), complete_cumulative_columns(), fill_empty_dates_with_na()

Canada Canada Class containing origin specific attributes and methods

Description

Information for downloading, cleaning and processing COVID-19 region data for Canada.

Super class

covidregionaldata::DataClass -> Canada

Public fields

origin name of origin to fetch data for
supported_levels A list of supported levels.
supported_region_names A list of region names in order of level.
supported_region_codes A list of region codes in order of level.
common_data_urls List of named links to raw data that are common across levels.
source_data_cols existing columns within the raw data
source_text Plain text description of the source of the data
source_url Website address for explanation/introduction of the data

Canada 9

Methods

Public methods:

• Canada$set_region_codes()

• Canada$clean_common()

• Canada$clone()

Method set_region_codes(): Set up a table of region codes for clean data

Usage:

Canada$set_region_codes()

Method clean_common(): Provincial Level Data cleaning

Usage:

Canada$clean_common()

Arguments:

... pass additional arguments

Method clone(): The objects of this class are cloneable with this method.

Usage:

Canada$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Source

https://health-infobase.canada.ca

See Also

Subnational data sources Belgium, Brazil, Colombia, Covid19DataHub, Cuba, Estonia, France,
Germany, Google, India, Italy, JHU, Lithuania, Mexico, Netherlands, SouthAfrica, Switzerland,
UK, USA

Examples

Not run:
region <- Canada$new(verbose = TRUE, steps = TRUE, get = TRUE)
region$return()

End(Not run)

https://health-infobase.canada.ca

10 Colombia

check_level Checks a given level is supported

Description

Checks a given level is supported

Usage

check_level(level, supported_levels)

Arguments

level A character string indicating the current level.
supported_levels

A character vector of supported levels

Colombia Colombia Class for downloading, cleaning and processing notifica-
tion data

Description

Information for downloading, cleaning and processing COVID-19 region data for Colombia

Super class

covidregionaldata::DataClass -> Colombia

Public fields

origin name of origin to fetch data for

supported_levels A list of supported levels.

supported_region_names A list of region names in order of level.

supported_region_codes A list of region codes in order of level.

common_data_urls List of named links to raw data.

source_data_cols existing columns within the raw data

source_text Plain text description of the source of the data

source_url Website address for explanation/introduction of the data

Colombia 11

Methods

Public methods:

• Colombia$set_region_codes()

• Colombia$download()

• Colombia$clean_common()

• Colombia$clean_level_1()

• Colombia$clone()

Method set_region_codes(): Set up a table of region codes for clean data

Usage:
Colombia$set_region_codes()

Method download(): Colombia specific download using Socrata API This uses the RSocrata
package if it is installed or downloads a much larger csv file if that package is not available.

Usage:
Colombia$download()

Method clean_common(): Colombia specific data cleaning

Usage:
Colombia$clean_common()

Method clean_level_1(): Colombia Specific Department Level Data Cleaning
Aggregates data to the level 1 (department) regional level. Data is provided by the source at the
level 2 (municipality) regional level.

Usage:
Colombia$clean_level_1()

Method clone(): The objects of this class are cloneable with this method.

Usage:
Colombia$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Source

https://www.datos.gov.co/Salud-y-Protecci-n-Social/Casos-positivos-de-COVID-19-en-Colombia/
gt2j-8ykr

See Also

Subnational data sources Belgium, Brazil, Canada, Covid19DataHub, Cuba, Estonia, France,
Germany, Google, India, Italy, JHU, Lithuania, Mexico, Netherlands, SouthAfrica, Switzerland,
UK, USA

https://www.datos.gov.co/Salud-y-Protecci-n-Social/Casos-positivos-de-COVID-19-en-Colombia/gt2j-8ykr
https://www.datos.gov.co/Salud-y-Protecci-n-Social/Casos-positivos-de-COVID-19-en-Colombia/gt2j-8ykr

12 complete_cumulative_columns

Examples

Not run:
region <- Colombia$new(verbose = TRUE, steps = TRUE, get = TRUE)
region$return()

End(Not run)

colombia_codes Region Codes for Colombia Dataset.

Description

The region codes for Colombia

Usage

colombia_codes

Format

An object of class data.frame with 1119 rows and 4 columns.

Value

A tibble of region codes and related information.

complete_cumulative_columns

Completes cumulative columns if rows were added with NAs.

Description

If a dataset had a row of NAs added to it (using fill_empty_dates_with_na) then cumulative data
columns will have NAs which can cause issues later. This function fills these values with the
previous non-NA value.

Usage

complete_cumulative_columns(data)

Arguments

data A data frame

Value

A data tibble with NAs filled in for cumulative data columns.

CountryDataClass 13

See Also

Compulsory processing functions add_extra_na_cols(), calculate_columns_from_existing_data(),
fill_empty_dates_with_na()

CountryDataClass R6 Class containing national level methods

Description

Acts as parent class for national data classes, allowing them to access general methods defined in
DataClass() but with additional

Details

On top of the methods documented in DataClass(), this class implements a custom filter function
that supports partial matching to English country names using the countrycode package.

Super class

covidregionaldata::DataClass -> CountryDataClass

Public fields

filter_level Character The level of the data to filter at. Defaults to the country level of the data.

Methods

Public methods:
• CountryDataClass$filter()

• CountryDataClass$clone()

Method filter(): Filter method for country level data. Uses countryname to match input
countries with known names.

Usage:
CountryDataClass$filter(countries, level)

Arguments:
countries A character vector of target countries. Overrides the current class setting for target_regions.

If the filter_level field level argument is set to anything other than level 1 this is passed
directly to the parent DataClass() filter() method with no alteration.

level Character The level of the data to filter at. Defaults to the conuntry level if not specified.

Method clone(): The objects of this class are cloneable with this method.

Usage:
CountryDataClass$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

14 Covid19DataHub

See Also

Data interface functions DataClass, get_available_datasets(), get_national_data(), get_regional_data(),
initialise_dataclass()

Covid19DataHub R6 Class containing specific attributes and methods for Covid19 Data
Hub

Description

Attributes and methods for COVID-19 data provided by the Covid19 Data Hub

Details

This dataset supports both national and subnational data sources with national level data returned
by default. National data is sourced from John Hopkins University and so we recommend using the
JHU class included in this package. Subnational data is supported for a subset of countries which
can be found after cleaning using the available_regions() method, see the examples for more de-
tails. These data sets are minimally cleaned data files hosted by the team at COVID19 Data Hub so
please see their source repository for further details (https://github.com/covid19datahub/COVID19/#data-
sources) If using for analysis checking the source for further details is strongly advised.

If using this class please cite: "Guidotti et al., (2020). COVID-19 Data Hub Journal of Open Source
Software, 5(51), 2376, https://doi.org/10.21105/joss.02376"

Super classes

covidregionaldata::DataClass -> covidregionaldata::CountryDataClass -> Covid19DataHub

Public fields

origin name of country to fetch data for

supported_levels A list of supported levels.

supported_region_names A list of region names in order of level.

supported_region_codes A list of region codes in order of level.

level_data_urls List of named links to raw data. The first, and only entry, is be named main.

source_data_cols existing columns within the raw data

source_text Plain text description of the source of the data

source_url Website address for explanation/introduction of the data

Covid19DataHub 15

Methods

Public methods:
• Covid19DataHub$clean_common()

• Covid19DataHub$clone()

Method clean_common(): Covid19 Data Hub specific data cleaning. This takes all the raw data,
renames some columns and checks types.

Usage:
Covid19DataHub$clean_common()

Method clone(): The objects of this class are cloneable with this method.

Usage:
Covid19DataHub$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Source

https://covid19datahub.io/articles/data.html

See Also

Aggregated data sources Google, JHU

National data sources ECDC, Google, JHU, JRC, WHO

Subnational data sources Belgium, Brazil, Canada, Colombia, Cuba, Estonia, France, Germany,
Google, India, Italy, JHU, Lithuania, Mexico, Netherlands, SouthAfrica, Switzerland, UK,
USA

Examples

nolint start
Not run:
set up a data cache
start_using_memoise()

get all countries data
cv19dh <- Covid19DataHub$new(level = "1", get = TRUE)
cv19dh$return()

show available regions with data at the second level of interest
cv19dh_level_2 <- Covid19DataHub$new(level = "2")
cv19dh_level_2$download()
cv19dh_level_2$clean()
cv19dh$available_regions()

get all region data for the uk
cv19dh_level_2$filter("uk")
cv19dh_level_2$process()

https://covid19datahub.io/articles/data.html

16 csv_reader

cv19dh_level_2$return()

get all regional data for the UK
uk <- Covid19DataHub$new(regions = "uk", level = "2", get = TRUE)
uk$return()

get all subregional data for the UK
uk <- Covid19DataHub$new(regions = "uk", level = "3", get = TRUE)
uk$return()

End(Not run)
nolint end

csv_reader Custom CSV reading function

Description

Checks for use of memoise and then uses vroom::vroom.

Usage

csv_reader(file, verbose = FALSE, guess_max = 1000, ...)

Arguments

file A URL or filepath to a CSV

verbose Logical, defaults to TRUE. Should verbose processing messages and warnings be
returned.

guess_max Maximum number of records to use for guessing column types. Defaults to a
1000.

... extra parameters to be passed to vroom::vroom

Value

A data table

Cuba 17

Cuba Cuba Class for downloading, cleaning and processing notification
data

Description

Information for downloading, cleaning and processing COVID-19 region data for Cuba

Super class

covidregionaldata::DataClass -> Cuba

Public fields

origin name of origin to fetch data for

supported_levels A list of supported levels.

supported_region_names A list of region names in order of level.

supported_region_codes A list of region codes in order of level.

common_data_urls List of named links to raw data.

source_data_cols existing columns within the raw data

source_text Plain text description of the source of the data

source_url Website address for explanation/introduction of the data

Methods

Public methods:
• Cuba$set_region_codes()

• Cuba$clean_common()

• Cuba$clone()

Method set_region_codes(): Set up a table of region codes for clean data

Usage:
Cuba$set_region_codes()

Method clean_common(): Cuba specific state level data cleaning

Usage:
Cuba$clean_common()

Method clone(): The objects of this class are cloneable with this method.

Usage:
Cuba$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

18 DataClass

Source

https://covid19cubadata.github.io/

See Also

Subnational data sources Belgium, Brazil, Canada, Colombia, Covid19DataHub, Estonia, France,
Germany, Google, India, Italy, JHU, Lithuania, Mexico, Netherlands, SouthAfrica, Switzerland,
UK, USA

Examples

Not run:
region <- Cuba$new(verbose = TRUE, steps = TRUE, get = TRUE)
region$return()

End(Not run)

DataClass R6 Class containing non-dataset specific methods

Description

A parent class containing non-dataset specific methods.

Details

All data sets have shared methods for extracting geographic codes, downloading, processing, and
returning data. These functions are contained within this parent class and so are accessible by all
data sets which inherit from here. Individual data sets can overwrite any functions or fields provid-
ing they define a method with the same name, and can be extended with additional functionality.
See the individual method documentaion for further details.

Public fields

origin the origin of the data source. For regional data sources this will usually be the name of the
country.

data Once initialised, a list of named data frames: raw (list of named raw data frames) clean
(cleaned data) and processed (processed data). Data is accessed using $data.

supported_levels A list of supported levels.

supported_region_names A list of region names in order of level.

supported_region_codes A list of region codes in order of level.

region_name string Name for the region column, e.g. ’region’. This field is filled at initialisation
with the region name for the specified level (supported_region_names$level).

code_name string Name for the codes column, e.g. ’iso_3166_2’ Filled at initialisation with the
code name associated with the requested level (supported_region_codes$level).

https://covid19cubadata.github.io/

DataClass 19

codes_lookup string or tibble Region codes for the target origin filled by origin specific codes in
set_region_codes()

data_urls List of named common and shared url links to raw data. Prefers shared if there is a
name conflict.

common_data_urls List of named links to raw data that are common across levels. The first entry
should be named main.

level_data_urls List of named links to raw data that are level specific. Any urls that share a
name with a url from common_data_urls will be selected preferentially. Each top level list
should be named after a supported level.

source_data_cols existing columns within the raw data

level target region level. This field is filled at initialisation using user inputs or defaults in $new()

data_name string. The country name followed by the level. E.g. "Italy at level 1"

totals Boolean. If TRUE, returns totalled data per region up to today’s date. This field is filled at
initialisation using user inputs or defaults in $new()

localise Boolean. Should region names be localised. This field is filled at initialisation using
user inputs or defaults in $new()

verbose Boolean. Display information at various stages. This field is filled at initialisation. using
user inputs or defaults in $new()

steps Boolean. Keep data from each processing step. This field is filled at initialisation.using user
inputs or defaults in $new()

target_regions A character vector of regions to filter for. Used by the filter method.

process_fns array, additional, user supplied functions to process the data.

filter_level Character The level of the data to filter at. Defaults to the target level.

Methods

Public methods:

• DataClass$set_region_codes()

• DataClass$new()

• DataClass$download()

• DataClass$download_JSON()

• DataClass$clean()

• DataClass$clean_common()

• DataClass$available_regions()

• DataClass$filter()

• DataClass$process()

• DataClass$get()

• DataClass$return()

• DataClass$summary()

• DataClass$test()

• DataClass$clone()

20 DataClass

Method set_region_codes(): Place holder for custom country specific function to load region
codes.

Usage:
DataClass$set_region_codes()

Method new(): Initialize function used by all DataClass objects. Set up the DataClass class
with attributes set to input parameters. Should only be called by a DataClass class object.

Usage:
DataClass$new(
level = "1",
filter_level,
regions,
totals = FALSE,
localise = TRUE,
verbose = TRUE,
steps = FALSE,
get = FALSE,
process_fns

)

Arguments:
level A character string indicating the target administrative level of the data with the default

being "1". Currently supported options are level 1 ("1) and level 2 ("2").
filter_level A character string indicating the level to filter at. Defaults to the level of the data

if not specified and if not otherwise defined in the class. Use get_available_datasets()
for supported options by dataset.

regions A character vector of target regions to be assigned to thetarget_regions field if
present.

totals Logical, defaults to FALSE. If TRUE, returns totalled data per region up to today’s
date. If FALSE, returns the full dataset stratified by date and region.

localise Logical, defaults to TRUE. Should region names be localised.
verbose Logical, defaults to TRUE. Should verbose processing
steps Logical, defaults to FALSE. Should all processing and cleaning steps be kept and output

in a list.
get Logical, defaults to FALSE. Should the class get method be called (this will download,

clean, and process data at initialisation).
process_fns Array, additional functions to process the data. Users can supply their own func-

tions here which would act on clean data and they will be called alongside our default pro-
cessing functions. The default optional function added is set_negative_values_to_zero.
if process_fns is not set (see process_fns field for all defaults). If you want to keep this
when supplying your own processing functions remember to add it to your list also. If you
feel you have created a cool processing function that others could benefit from please submit
a Pull Request to our github repository and we will consider adding it to the package.

Method download(): Download raw data from data_urls, stores a named list of the data_url
name and the corresponding raw data table in data$raw

Usage:

https://github.com/epiforecasts/covidregionaldata

DataClass 21

DataClass$download()

Method download_JSON(): Download raw data from data_urls, stores a named list of the
data_url name and the corresponding raw data table in data$raw. Designed as a drop-in re-
placement for download so it can be used in sub-classes.

Usage:
DataClass$download_JSON()

Method clean(): Cleans raw data (corrects format, converts column types, etc). Works on raw
data and so should be called after download() Calls the specific class specific cleaning method
(clean_common) followed by level specific cleaning methods. clean_level_[1/2]. Cleaned
data is stored in data$clean

Usage:
DataClass$clean()

Method clean_common(): Cleaning methods that are common across a class. By default
this method is empty as if any code is required it should be defined in a child class specific
clean_common method.

Usage:
DataClass$clean_common()

Method available_regions(): Show regions that are available to be used for filtering opera-
tions. Can only be called once clean() has been called. Filtering level is determined by checking
the filter_level field.

Usage:
DataClass$available_regions(level)

Arguments:

level A character string indicating the level to filter at. Defaults to using the filter_level
field if not specified

Method filter(): Filter cleaned data for a specific region To be called after clean()

Usage:
DataClass$filter(regions, level)

Arguments:

regions A character vector of target regions. Overrides the current class setting for target_regions.
level Character The level of the data to filter at. Defaults to the lowest level in the data.

Method process(): Processes data by adding and calculating absent columns. Called on clean
data (after clean()). Some countries may have data as new events (e.g. number of new cases
for that day) whilst others have a running total up to that date. Processing calculates these based
on what the data comes with via the functions region_dispatch() and process_internal(),
which does the following:

• Adds columns not present in the data add_extra_na_cols()

• Ensures there are no negative values set_negative_values_to_zero()
• Removes NA dates fill_empty_dates_with_na()

22 DataClass

• Calculates cumulative data complete_cumulative_columns()

• Calculates missing columns from existing ones calculate_columns_from_existing_data()

Usage:
DataClass$process(process_fns)

Arguments:

process_fns Array, additional functions to process the data. Users can supply their own func-
tions here which would act on clean data and they will be called alongside our default pro-
cessing functions. The default optional function added is set_negative_values_to_zero.
if process_fns is not set (see process_fns field for all defaults).

Method get(): Get data related to the data class. This runs each distinct step in the workflow
in order. Internally calls download(), clean(), filter() and process() download, clean,
filter and process methods.

Usage:
DataClass$get()

Method return(): Return data. Designed to be called after process() this uses the steps
argument to return either a list of all the data preserved at each step or just the processed data. For
most datasets a custom method should not be needed.

Usage:
DataClass$return()

Method summary(): Create a table of summary information for the data set being processed.

Usage:
DataClass$summary()

Returns: Returns a single row summary tibble containing the origin of the data source, class,
level 1 and 2 region names, the type of data, the urls of the raw data and the columns present in
the raw data.

Method test(): Run tests on a country class instance. Calling test() on a class instance
runs tests with the settings in use. For example, if you set level = "1" and localise = FALSE
the tests will be run on level 1 data which is not localised. Rather than downloading data for a
test users can provide a path to a snapshot file of data to test instead. Tests are run on a clone of
the class. This method calls generic tests for all country class objects. It also calls country spe-
cific tests which can be defined in an individual country class method called specific_tests().
The snapshots contain the first 1000 rows of data. For more details see the ’testing’ vignette:
vignette(testing).

Usage:
DataClass$test(
download = FALSE,
snapshot_dir = paste0(tempdir(), "/snapshots"),
all = FALSE,
...

)

Arguments:

https://github.com/epiforecasts/covidregionaldata/blob/master/vignettes/testing.Rmd

download_excel 23

download logical. To download the data (TRUE) or use a snapshot (FALSE). Defaults to
FALSE.

snapshot_dir character_array the name of a directory to save the downloaded data or read
from. If not defined a directory called ’snapshots’ will be created in the temp directory.
Snapshots are saved as rds files with the class name and level: e.g. Italy_level_1.rds.

all logical. Run tests with all settings (TRUE) or with those defined in the current class in-
stance (FALSE). Defaults to FALSE.

... Additional parameters to pass to specific_tests

Method clone(): The objects of this class are cloneable with this method.

Usage:
DataClass$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Data interface functions CountryDataClass, get_available_datasets(), get_national_data(),
get_regional_data(), initialise_dataclass()

download_excel Download Excel Documents

Description

Download Excel Documents

Usage

download_excel(url, archive, verbose = FALSE, transpose = TRUE, ...)

Arguments

url Character string containing the full URL to the Excel document.

archive Character string naming the file name to assign in the temporary directory.

verbose Logical, defaults to TRUE. Should verbose processing messages and warnings be
returned.

transpose Logical, should the read in data be transposed

... Additional parameters to pass to read_excel().

Value

A data.frame.

24 ECDC

ECDC R6 Class containing specific attributes and methods for the European
Centre for Disease Prevention and Control dataset

Description

Information for downloading, cleaning and processing the European Centre for Disease Prevention
and Control COVID-19 data.

Super classes

covidregionaldata::DataClass -> covidregionaldata::CountryDataClass -> ECDC

Public fields

origin name of origin to fetch data for

supported_levels A list of supported levels.

supported_region_names A list of region names in order of level.

supported_region_codes A list of region codes in order of level.

common_data_urls List of named links to raw data.

source_data_cols existing columns within the raw data

source_text Plain text description of the source of the data

source_url Website address for explanation/introduction of the data

Methods

Public methods:
• ECDC$clean_common()

• ECDC$return()

• ECDC$specific_tests()

• ECDC$clone()

Method clean_common(): ECDC specific state level data cleaning

Usage:
ECDC$clean_common()

Method return(): Specific return settings for the ECDC dataset.

Usage:
ECDC$return()

Method specific_tests(): Run additional tests on ECDC class. Tests ECDC has required
additional columns and that there is only one row per country. Designed to be run from test and
not run directly.

Usage:

Estonia 25

ECDC$specific_tests(self_copy, ...)

Arguments:

self_copy R6class the object to test

... Extra params passed to specific download functions

Method clone(): The objects of this class are cloneable with this method.

Usage:

ECDC$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Source

https://www.ecdc.europa.eu/en/publications-data/download-todays-data-geographic-distribution-covid-19-cases-worldwide

See Also

National data sources Covid19DataHub, Google, JHU, JRC, WHO

Examples

Not run:
national <- ECDC$new(verbose = TRUE, steps = TRUE, get = TRUE)
national$return()

End(Not run)

Estonia Estonia Class for downloading, cleaning and processing notification
data

Description

Information for downloading, cleaning and processing COVID-19 region data for Estonia

Super class

covidregionaldata::DataClass -> Estonia

https://www.ecdc.europa.eu/en/publications-data/download-todays-data-geographic-distribution-covid-19-cases-worldwide

26 Estonia

Public fields

origin name of origin to fetch data for
supported_levels A list of supported levels.
supported_region_names A list of region names in order of level.
supported_region_codes A list of region codes in order of level.
common_data_urls List of named links to raw data.
source_data_cols existing columns within the raw data
source_text Plain text description of the source of the data
source_url Website address for explanation/introduction of the data

Methods

Public methods:
• Estonia$set_region_codes()

• Estonia$clean_common()

• Estonia$clone()

Method set_region_codes(): Set up a table of region codes for clean data
Usage:
Estonia$set_region_codes()

Method clean_common(): Estonia specific state level data cleaning
Usage:
Estonia$clean_common()

Method clone(): The objects of this class are cloneable with this method.
Usage:
Estonia$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Source

https://www.terviseamet.ee/et/koroonaviirus/avaandmed

See Also

Subnational data sources Belgium, Brazil, Canada, Colombia, Covid19DataHub, Cuba, France,
Germany, Google, India, Italy, JHU, Lithuania, Mexico, Netherlands, SouthAfrica, Switzerland,
UK, USA

Examples

Not run:
region <- Estonia$new(verbose = TRUE, steps = TRUE, get = TRUE)
region$return()

End(Not run)

https://www.terviseamet.ee/et/koroonaviirus/avaandmed

expect_clean_cols 27

expect_clean_cols Test clean columns contain the correct data and types

Description

Checks the date column is an s3 class and that region level column is a character in the cleaned data
(data$clean)

Usage

expect_clean_cols(data, level)

Arguments

data The clean data to check

level character_array the level of the data to check

See Also

Functions used for testing data is cleaned and processed correctly expect_columns_contain_data(),
expect_processed_cols(), test_cleaning(), test_download_JSON(), test_download(), test_processing(),
test_return()

expect_columns_contain_data

Test that cleaned columns contain data/

Description

Checks that cleaned columns cases, deaths, recovered and test (new and total) are not entirely
composed of NAs.

Usage

expect_columns_contain_data(DataClass_obj)

Arguments

DataClass_obj The DataClass object (R6Class) to perform checks on. Must be a DataClass or
DataClass child object.

See Also

Functions used for testing data is cleaned and processed correctly expect_clean_cols(), expect_processed_cols(),
test_cleaning(), test_download_JSON(), test_download(), test_processing(), test_return()

28 fill_empty_dates_with_na

expect_processed_cols Test that processed columns contain the correct data and types

Description

Checks that processed data columns date, cases_new, cases_total, deaths_new, deaths_total and that
region level have the correct types.

Usage

expect_processed_cols(data, level = "1", localised = TRUE)

Arguments

data The data to check

level character_array the level of the data to check

localised logical to check localised data or not, defaults to TRUE.

See Also

Functions used for testing data is cleaned and processed correctly expect_clean_cols(), expect_columns_contain_data(),
test_cleaning(), test_download_JSON(), test_download(), test_processing(), test_return()

fill_empty_dates_with_na

Add rows of NAs for dates where a region does not have any data

Description

There are points, particularly early during data collection, where data was not collected for all
regions. This function finds dates which have data for some regions, but not all, and adds rows of
NAs for the missing regions. This is mainly for reasons of completeness.

Usage

fill_empty_dates_with_na(data)

Arguments

data A data frame

Value

A tibble with rows of NAs added.

France 29

See Also

Compulsory processing functions add_extra_na_cols(), calculate_columns_from_existing_data(),
complete_cumulative_columns()

France France Class containing origin specific attributes and methods

Description

Information for downloading, cleaning and processing COVID-19 region data for France.

Super class

covidregionaldata::DataClass -> France

Public fields

origin name of origin to fetch data for

supported_levels A list of supported levels.

supported_region_names A list of region names in order of level.

supported_region_codes A list of region codes in order of level.

level_data_urls List of named links to raw data that are level specific.

source_data_cols existing columns within the raw data

source_text Plain text description of the source of the data

source_url Website address for explanation/introduction of the data

Methods

Public methods:
• France$set_region_codes()

• France$clean_level_1()

• France$clean_level_2()

• France$clone()

Method set_region_codes(): Set up a table of region codes for clean data

Usage:
France$set_region_codes()

Method clean_level_1(): Region Level Data Cleaning

Usage:
France$clean_level_1()

Method clean_level_2(): Department Level Data Cleaning

30 france_codes

Usage:
France$clean_level_2()

Method clone(): The objects of this class are cloneable with this method.

Usage:
France$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Source

https://www.data.gouv.fr/fr/datasets/r/406c6a23-e283-4300-9484-54e78c8ae675

https://www.data.gouv.fr/fr/datasets/r/6fadff46-9efd-4c53-942a-54aca783c30c

https://www.data.gouv.fr/fr/datasets/r/001aca18-df6a-45c8-89e6-f82d689e6c01

See Also

Subnational data sources Belgium, Brazil, Canada, Colombia, Covid19DataHub, Cuba, Estonia,
Germany, Google, India, Italy, JHU, Lithuania, Mexico, Netherlands, SouthAfrica, Switzerland,
UK, USA

Examples

Not run:
region <- France$new(level = "2", verbose = TRUE, steps = TRUE, get = TRUE)
region$return()

End(Not run)

france_codes Region Codes for France Dataset.

Description

The region codes for France

Usage

france_codes

Format

An object of class data.frame with 104 rows and 5 columns.

Value

A tibble of region codes and related information.

https://www.data.gouv.fr/fr/datasets/r/406c6a23-e283-4300-9484-54e78c8ae675
https://www.data.gouv.fr/fr/datasets/r/6fadff46-9efd-4c53-942a-54aca783c30c
https://www.data.gouv.fr/fr/datasets/r/001aca18-df6a-45c8-89e6-f82d689e6c01

Germany 31

Germany Germany Class for downloading, cleaning and processing notification
data

Description

Information for downloading, cleaning and processing COVID-19 region level 1 and 2 data for
Germany.

Super class

covidregionaldata::DataClass -> Germany

Public fields

origin name of origin to fetch data for

supported_levels A list of supported levels.

supported_region_names A list of region names in order of level.

supported_region_codes A list of region codes in order of level.

common_data_urls List of named links to raw data. The first, and only entry, is be named main.

source_data_cols existing columns within the raw data

source_text Plain text description of the source of the data

source_url Website address for explanation/introduction of the data

Methods

Public methods:
• Germany$set_region_codes()

• Germany$clean_common()

• Germany$clean_level_1()

• Germany$clean_level_2()

• Germany$clone()

Method set_region_codes(): Set up a table of region codes for clean data

Usage:
Germany$set_region_codes()

Method clean_common(): Common Data Cleaning

Usage:
Germany$clean_common()

Method clean_level_1(): Bundesland Level Data Cleaning

Usage:

32 get_available_datasets

Germany$clean_level_1()

Method clean_level_2(): Landkreis Level Data Cleaning

Usage:
Germany$clean_level_2()

Method clone(): The objects of this class are cloneable with this method.

Usage:
Germany$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Source

https://opendata.arcgis.com/datasets/dd4580c810204019a7b8eb3e0b329dd6_0.csv

See Also

Subnational data sources Belgium, Brazil, Canada, Colombia, Covid19DataHub, Cuba, Estonia,
France, Google, India, Italy, JHU, Lithuania, Mexico, Netherlands, SouthAfrica, Switzerland,
UK, USA

Examples

Not run:
region <- Germany$new(verbose = TRUE, steps = TRUE, level = "2", get = TRUE)
region$return()

End(Not run)

get_available_datasets

Get supported data sets

Description

Returns data on what countries are available from the data provided with this package either using
a cached dataset or built by searching the target namespace.

Usage

get_available_datasets(type, render = FALSE, namespace = "covidregionaldata")

https://opendata.arcgis.com/datasets/dd4580c810204019a7b8eb3e0b329dd6_0.csv

get_national_data 33

Arguments

type A character vector indicating the types of data to return. Current options in-
clude "national" (which are datasets at the national level which inherit from
CountryDataClass) and "regional" (which are datasets at the regional level
which inherit directly from DataClass()).

render Logical If TRUE the supported data set table is built from the available classes
using summary methods. If FALSE the supported data set table is taken from
package data. Defaults to FALSE.

namespace Character string The name of the namespace to search for class objects. Defaults
to "covidregionaldata" as the package.

Value

A list of available data sets and the spatial aggregation data is available for.

See Also

Data interface functions CountryDataClass, DataClass, get_national_data(), get_regional_data(),
initialise_dataclass()

Examples

see all available datasets
get_available_datasets()

see only national level datasets
get_available_datasets("national")

see only regional level datasets
get_available_datasets("regional")

render the data
get_available_datasets(render = TRUE)

get_national_data Get national-level data for countries globally from a range of sources

Description

Provides an interface to source specific classes which support national level data. For simple use
cases this allows downloading clean, standardised, national-level COVID-19 data sets. Internally
this uses the CountryDataClass() parent class which allows documented downloading, cleaning,
and processing. Optionally all steps of data processing can be returned along with the functions
used for processing but by default just the finalised processed data is returned. See the examples for
some potential use cases and the links to lower level functions for more details and options.

34 get_national_data

Usage

get_national_data(
countries,
source = "who",
level = "1",
totals = FALSE,
steps = FALSE,
class = FALSE,
verbose = TRUE,
...

)

Arguments

countries A character vector specifying country names of interest. Used to filter the data.

source A character string specifying the data source (not case dependent). Defaults to
WHO (the World Health Organisation). See get_available_datasets("national")
for all options.

level A character string indicating the target administrative level of the data with the
default being "1". Currently supported options are level 1 ("1) and level 2 ("2").
Use get_available_datasets() for supported options by dataset.

totals Logical, defaults to FALSE. If TRUE, returns totalled data per region up to
today’s date. If FALSE, returns the full dataset stratified by date and region.

steps Logical, defaults to FALSE. Should all processing and cleaning steps be kept
and output in a list.

class Logical, defaults to FALSE. If TRUE returns the DataClass object rather than
a tibble or a list of tibbles. Overrides steps.

verbose Logical, defaults to TRUE. Should verbose processing messages and warnings be
returned.

... Additional arguments to pass to class specific functionality.

Value

A tibble with data related to cases, deaths, hospitalisations, recoveries and testing.

See Also

WHO(), ECDC(), JHU(), Google()

Data interface functions CountryDataClass, DataClass, get_available_datasets(), get_regional_data(),
initialise_dataclass()

Examples

Not run:
set up a data cache
start_using_memoise()

get_regional_data 35

download all national data from the WHO
get_national_data(source = "who")

download data for Canada keeping all processing steps
get_national_data(countries = "canada", source = "ecdc")

download data for Canada from the JHU and return the full class
jhu <- get_national_data(countries = "canada", source = "jhu", class = TRUE)
jhu

return the JHU data for canada
jhu$return()

check which regions the JHU supports national data for
jhu$available_regions()

filter instead for France (and then reprocess)
jhu$filter("France")
jhu$process()

explore the structure of the stored JHU data
jhu$data

End(Not run)

get_regional_data Get regional-level data

Description

Provides an interface to source specific classes which support regional level data. For simple use
cases this allows downloading clean, standardised, regional-level COVID-19 data sets. Internally
this uses the DataClass() parent class which allows documented downloading, cleaning, and pro-
cessing. Optionally all steps of data processing can be returned along with the functions used for
processing but by default just the finalised processed data is returned. See the examples for some
potential use cases and the links to lower level functions for more details and options.

Usage

get_regional_data(
country,
level = "1",
totals = FALSE,
localise = TRUE,
steps = FALSE,
class = FALSE,
verbose = TRUE,
regions,
...

)

36 get_regional_data

Arguments

country A character string specifying the country to get data from. Not case dependent.
Name should be the English name. For a list of options use get_available_datasets().

level A character string indicating the target administrative level of the data with the
default being "1". Currently supported options are level 1 ("1) and level 2 ("2").
Use get_available_datasets() for supported options by dataset.

totals Logical, defaults to FALSE. If TRUE, returns totalled data per region up to
today’s date. If FALSE, returns the full dataset stratified by date and region.

localise Logical, defaults to TRUE. Should region names be localised.

steps Logical, defaults to FALSE. Should all processing and cleaning steps be kept
and output in a list.

class Logical, defaults to FALSE. If TRUE returns the DataClass object rather than
a tibble or a list of tibbles. Overrides steps.

verbose Logical, defaults to TRUE. Should verbose processing messages and warnings be
returned.

regions A character vector of target regions to be assigned to the target_regions field
and used to filter the returned data.

... Additional arguments to pass to class specific functionality.

Value

A tibble with data related to cases, deaths, hospitalisations, recoveries and testing stratified by
regions within the given country.

See Also

Italy(), UK()

Data interface functions CountryDataClass, DataClass, get_available_datasets(), get_national_data(),
initialise_dataclass()

Examples

Not run:
set up a data cache
start_using_memoise()

download data for Italy
get_regional_data("italy")

return totals for Italy with no localisation
get_regional_data("italy", localise = FALSE, totals = TRUE)

download data for the UK but return the class
uk <- get_regional_data("United Kingdom", class = TRUE)
uk

return UK data from the class object]

glue_level 37

uk$return()

End(Not run)

glue_level Glue the spatial level into a variable name

Description

Glue the spatial level into a variable name

Usage

glue_level(level)

Arguments

level A character string indicating the current level.

Value

A string in the form "level_1_region".

Google R6 Class containing specific attributes and methods for Google data

Description

Google specific information for downloading, cleaning and processing covid-19 region data for an
example Country. The function works the same as other national data sources, however, data from
Google supports three subregions (country, subregion and subregion2) which can be accessed using
the ’level’ argument. There is also more data available, such as hospitalisations data. The raw data
comes as three seperate data sets, "epidemiology" which is comprised of cases, tests and deaths,
"index", which holds information about countries linking the other data sets, and "hospitalizations"
which holds data about number of people in hospital, ICU, etc.

Super classes

covidregionaldata::DataClass -> covidregionaldata::CountryDataClass -> Google

38 Google

Public fields

origin name of country to fetch data for
supported_levels A list of supported levels.
supported_region_names A list of region names in order of level.
supported_region_codes A list of region codes in order of level.
common_data_urls List of named links to raw data.
source_data_cols existing columns within the raw data
source_text Plain text description of the source of the data
source_url Website address for explanation/introduction of the data

Methods

Public methods:
• Google$clean_common()

• Google$clean_level_1()

• Google$clean_level_2()

• Google$new()

• Google$clone()

Method clean_common(): GoogleData specific subregion2 level data cleaning. This takes all
the raw data, puts into a single data frame, renames some columns and checks types.

Usage:
Google$clean_common()

Method clean_level_1(): Google specific subregion level data cleaning. Takes the data
cleaned by clean_common and aggregates it to the country level (level 1).

Usage:
Google$clean_level_1()

Method clean_level_2(): Google specific subregion2 level data cleaning. Takes the data
cleaned by clean_common and aggregates it to the subregion level (level 2).

Usage:
Google$clean_level_2()

Method new(): custom initialize for Google
Usage:
Google$new(...)

Arguments:
... arguments to be passed to DataClass and initialize Google

Method clone(): The objects of this class are cloneable with this method.
Usage:
Google$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

India 39

Source

https://github.com/GoogleCloudPlatform/covid-19-open-data

See Also

Aggregated data sources Covid19DataHub, JHU

National data sources Covid19DataHub, ECDC, JHU, JRC, WHO

Subnational data sources Belgium, Brazil, Canada, Colombia, Covid19DataHub, Cuba, Estonia,
France, Germany, India, Italy, JHU, Lithuania, Mexico, Netherlands, SouthAfrica, Switzerland,
UK, USA

Examples

nolint start
Not run:
set up a data cache
start_using_memoise()

get all countries
national <- Google$new(level = "1", get = TRUE)
national$return()

show available regions with data at the second level of interest
google_level_2 <- Google$new(level = "2")
google_level_2$download()
google_level_2$clean()
google$available_regions()

get all region data for the uk
google_level_2$filter("uk")
google_level_2$process()
google_level_2$return()

get all regional data for the UK
uk <- Google$new(regions = "uk", level = "2", get = TRUE)
uk$return()

get all subregional data for the UK
uk <- Google$new(regions = "uk", level = "3", get = TRUE)
uk$return()

End(Not run)
nolint end

India India Class for downloading, cleaning and processing notification
data

https://github.com/GoogleCloudPlatform/covid-19-open-data

40 India

Description

Information for downloading, cleaning and processing COVID-19 region data for India.

Super class

covidregionaldata::DataClass -> India

Public fields

origin name of origin to fetch data for

supported_levels A list of supported levels.

supported_region_names A list of region names in order of level.

supported_region_codes A list of region codes in order of level.

common_data_urls List of named links to raw data.

source_data_cols existing columns within the raw data

source_text Plain text description of the source of the data

source_url Website address for explanation/introduction of the data

Methods

Public methods:
• India$set_region_codes()

• India$clean_common()

• India$get_desired_status()

• India$clone()

Method set_region_codes(): Set up a table of region codes for clean data

Usage:
India$set_region_codes()

Method clean_common(): India state level data cleaning

Usage:
India$clean_common()

Method get_desired_status(): Extract data from raw table

Usage:
India$get_desired_status(status)

Arguments:
status The data to extract

Method clone(): The objects of this class are cloneable with this method.

Usage:
India$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

initialise_dataclass 41

Source

https://www.covid19india.org

See Also

Subnational data sources Belgium, Brazil, Canada, Colombia, Covid19DataHub, Cuba, Estonia,
France, Germany, Google, Italy, JHU, Lithuania, Mexico, Netherlands, SouthAfrica, Switzerland,
UK, USA

Examples

Not run:
region <- India$new(verbose = TRUE, steps = TRUE, get = TRUE)
region$return()

End(Not run)

initialise_dataclass Initialise a child class of DataClass if it exists

Description

This function initialises classes based on the DataClass() which allows documented downloading,
cleaning, and processing. See the examples for some potential use cases and the DataClass()
documentation for more details.

Usage

initialise_dataclass(
class = character(),
level = "1",
totals = FALSE,
localise = TRUE,
regions,
verbose = TRUE,
steps = FALSE,
get = FALSE,
type = c("national", "regional"),
...

)

Arguments

class A character string specifying the DataClass() to initialise. Not case dependent
and matching is based on either the class name or the its country definition. For
a list of options use get_available_datasets().

https://www.covid19india.org

42 initialise_dataclass

level A character string indicating the target administrative level of the data with the
default being "1". Currently supported options are level 1 ("1) and level 2 ("2").
Use get_available_datasets() for supported options by dataset.

totals Logical, defaults to FALSE. If TRUE, returns totalled data per region up to
today’s date. If FALSE, returns the full dataset stratified by date and region.

localise Logical, defaults to TRUE. Should region names be localised.

regions A character vector of target regions to be assigned to the target_regions field
and used to filter the returned data.

verbose Logical, defaults to TRUE. Should verbose processing messages and warnings be
returned.

steps Logical, defaults to FALSE. Should all processing and cleaning steps be kept
and output in a list.

get Logical, defaults to FALSE. Should the class get method be called (this will
download, clean, and process data at initialisation).

type A character vector indicating the types of data to return. Current options in-
clude "national" (which are datasets at the national level which inherit from
CountryDataClass) and "regional" (which are datasets at the regional level
which inherit directly from DataClass()).

... Additional arguments to pass to class specific functionality.

Value

An initialised version of the target class if available, e.g. Italy()

See Also

Data interface functions CountryDataClass, DataClass, get_available_datasets(), get_national_data(),
get_regional_data()

Examples

Not run:
set up a cache to store data to avoid downloading repeatedly
start_using_memoise()

check currently available datasets
get_available_datasets()

initialise a data set in the United Kingdom
at the UTLA level
utla <- UK$new(level = "2")

download UTLA data
utla$download()

clean UTLA data
utla$clean()

Italy 43

inspect available level 1 regions
utla$available_regions(level = "1")

filter data to the East of England
utla$filter("East of England")

process UTLA data
utla$process()

return processed and filtered data
utla$return()

inspect all data steps
utla$data

initialise Italian data, download, clean and process it
italy <- initialise_dataclass("Italy", get = TRUE)
italy$return()

initialise ECDC data, fully process it, and return totals
ecdc <- initialise_dataclass("ecdc", get = TRUE, totals = TRUE)
ecdc$return()

End(Not run)

Italy Italy Class for downloading, cleaning and processing notification data

Description

Information for downloading, cleaning and processing COVID-19 region data for Italy.

Super class

covidregionaldata::DataClass -> Italy

Public fields

origin name of origin to fetch data for

supported_levels A list of supported levels.

supported_region_names A list of region names in order of level.

supported_region_codes A list of region codes in order of level.

common_data_urls List of named links to raw data. The first, and only entry, is be named main.

source_data_cols existing columns within the raw data

source_text Plain text description of the source of the data

source_url Website address for explanation/introduction of the data

44 Italy

Methods

Public methods:

• Italy$set_region_codes()

• Italy$clean_common()

• Italy$clone()

Method set_region_codes(): Set up a table of region codes for clean data

Usage:

Italy$set_region_codes()

Method clean_common(): State level data cleaning

Usage:

Italy$clean_common()

Method clone(): The objects of this class are cloneable with this method.

Usage:

Italy$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Source

https://github.com/pcm-dpc/COVID-19/

See Also

Subnational data sources Belgium, Brazil, Canada, Colombia, Covid19DataHub, Cuba, Estonia,
France, Germany, Google, India, JHU, Lithuania, Mexico, Netherlands, SouthAfrica, Switzerland,
UK, USA

Examples

Not run:
region <- Italy$new(verbose = TRUE, steps = TRUE, get = TRUE)
region$return()

End(Not run)

https://github.com/pcm-dpc/COVID-19/

JHU 45

JHU R6 Class containing specific attributes and methods for John Hopkins
University data

Description

Attributes and methods for COVID-19 data used for the 2019 Novel Coronavirus Visual Dash-
board operated by the Johns Hopkins University Center for Systems Science and Engineering (JHU
CSSE). Supported by ESRI Living Atlas Team and the Johns Hopkins University Applied Physics
Lab (JHU APL)

Details

This dataset support both national and subnational data sources with national level data returned by
default. Subnational data is supported for a subset of countries which can be found after cleaning
using the available_regions() method, see the examples for more details. These data sets are
sourced, cleaned, standardised by the JHU team so please see the source repository for further
details. Note that unlike many other data sets this means methods applied to this source are not
being applied to raw surveillance data but instead to already cleaned data. If using for analysis
checking the JHU source for further details is advisable.

If using this data please cite: "Dong E, Du H, Gardner L. An interactive web-based dashboard to
track COVID-19 in real time. Lancet Inf Dis. 20(5):533-534. doi: 10.1016/S1473-3099(20)30120-
1"

Super classes

covidregionaldata::DataClass -> covidregionaldata::CountryDataClass -> JHU

Public fields

origin name of country to fetch data for

supported_levels A list of supported levels.

supported_region_names A list of region names in order of level.

supported_region_codes A list of region codes in order of level.

common_data_urls List of named links to raw data. The first, and only entry, is be named main.

source_data_cols existing columns within the raw data

source_text Plain text description of the source of the data

source_url Website address for explanation/introduction of the data

Methods

Public methods:
• JHU$set_region_codes()

• JHU$clean_common()

46 JHU

• JHU$clean_level_1()

• JHU$clone()

Method set_region_codes(): Set up a table of region codes for clean data

Usage:
JHU$set_region_codes()

Method clean_common(): JHU specific data cleaning. Joins the raw data sets, checks column
types and renames where needed.

Usage:
JHU$clean_common()

Method clean_level_1(): JHU specific country level data cleaning. Aggregates the data to
the country (level 2) level.

Usage:
JHU$clean_level_1()

Method clone(): The objects of this class are cloneable with this method.

Usage:
JHU$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Source

https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data

See Also

Aggregated data sources Covid19DataHub, Google

National data sources Covid19DataHub, ECDC, Google, JRC, WHO

Subnational data sources Belgium, Brazil, Canada, Colombia, Covid19DataHub, Cuba, Estonia,
France, Germany, Google, India, Italy, Lithuania, Mexico, Netherlands, SouthAfrica, Switzerland,
UK, USA

Examples

nolint start
Not run:
set up a data cache
start_using_memoise()

get all countries data
jhu <- JHU$new(level = "1", get = TRUE)
jhu$return()

show available regions with data at the second level of interest
jhu_level_2 <- JHU$new(level = "2")

https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data

JHU_codes 47

jhu_level_2$download()
jhu_level_2$clean()
jhu$available_regions()

get all region data for the uk
jhu_level_2$filter("uk")
jhu_level_2$process()
jhu_level_2$return()

End(Not run)
nolint end

JHU_codes Region Codes for JHU Dataset. Taken from the region codes provided
as part of the WHO dataset.

Description

The region codes for JHU

Usage

JHU_codes

Format

An object of class spec_tbl_df (inherits from tbl_df, tbl, data.frame) with 4193 rows and 2
columns.

Value

A tibble of region codes and related information.

JRC R6 Class containing specific attributes and methods for European
Commission’s Joint Research Centre data

Description

Class for downloading, cleaning and processing COVID-19 region data from the European Com-
mission’s Joint Research Centre. Subnational data (admin level 1) on numbers of contagious and
fatalities by COVID-19, collected directly from the National Authoritative sources (National moni-
toring websites, when available). For more details see https://github.com/ec-jrc/COVID-19

Super classes

covidregionaldata::DataClass -> covidregionaldata::CountryDataClass -> JRC

48 JRC

Public fields

origin name of origin to fetch data for

supported_levels A list of supported levels.

supported_region_names A list of region names in order of level.

supported_region_codes A list of region codes in order of level.

level_data_urls List of named links to raw data.

source_data_cols existing columns within the raw data

source_text Plain text description of the source of the data

source_url Website address for explanation/introduction of the data

Methods

Public methods:

• JRC$clean_common()

• JRC$clean_level_1()

• JRC$clean_level_2()

• JRC$clone()

Method clean_common(): JRC specific data cleaning. The raw source data columns are con-
verted to the correct type and renamed appropriately to match the standard for general processing.

Usage:
JRC$clean_common()

Method clean_level_1(): JRC specific country level data cleaning. Selects country level
(level 1) columns from the data ready for further processing.

Usage:
JRC$clean_level_1()

Method clean_level_2(): JRC specific region level data cleaning. Selects country (level 1)
and region (level 2) columns from the data ready for further processing.

Usage:
JRC$clean_level_2()

Method clone(): The objects of this class are cloneable with this method.

Usage:
JRC$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Source

https://github.com/ec-jrc/COVID-19

https://github.com/ec-jrc/COVID-19

json_reader 49

See Also

National data sources Covid19DataHub, ECDC, Google, JHU, WHO

Examples

Not run:
get country level data
jrc_level_1 <- JRC$new(level = "1", verbose = TRUE, steps = TRUE, get = TRUE)
jrc_level_1$return()

show available regions with data at the first level of interest (country)
jrc_level_1$available_regions()

get region level data
jrc_level_2 <- JRC$new(level = "2", verbose = TRUE, steps = TRUE, get = TRUE)
jrc_level_2$return()

show available regions with data at the second level of interest (region)
jrc_level_2$available_regions()

End(Not run)

json_reader Custom JSON reading function

Description

Checks for use of memoise and then uses vroom::vroom.

Usage

json_reader(file, verbose = FALSE, ...)

Arguments

file A URL or filepath to a JSON

verbose Logical, defaults to TRUE. Should verbose processing messages and warnings be
returned.

... extra parameters to be passed to jsonlite::fromJSON

Value

A data table

50 Lithuania

Lithuania Lithuania Class for downloading, cleaning and processing notification
data

Description

Information for downloading, cleaning and processing COVID-19 region level 1 and 2 data for
Lithuania.

OSP Data fields

The Official Statistics Portal (OSP) provides many data series in their table.

The full range of these vectors can be returned by setting all_osp_fields to TRUE.

The following describes the data provided by the OSP.

field description
date the reporting day during which the events occurred or at the end of which the accounting was performed
municipality_code * code of the municipality assigned to persons
municipality_name + the name of the municipality assigned to the persons
population population size according to the data of the beginning of 2021, according to the declared place of residence
ab_pos_day Number of positive antibody test responses, days
ab_neg_day Number of negative antibody test responses, days
ab_tot_day Number of antibody tests, daily
ab_prc_day Percentage of positive antibody test responses per day
ag_pos_day Number of positive antigen test responses, daily
ag_neg_day Number of negative antigen test responses, daily
ag_tot_day Number of antigen tests, daily
ag_prc_day Percentage of positive responses to antigen tests per day
pcr_pos_day number of positive PCR test responses, daily
pcr_neg_day Number of PCR test negative responses, daily
pcr_tot_day number of PCR tests per day
pcr_prc_day Percentage of positive PCR test responses per day
dgn_pos_day Number of positive answers to diagnostic tests / tests, days
dgn_neg_day Number of negative answers to diagnostic tests / tests, days
dgn_prc_day Number of diagnostic examinations / tests, days
dgn_tot_day Percentage of positive answers to diagnostic tests / tests per day
dgn_tot_day_gmp Number of diagnostic examinations / tests of samples collected at mobile points, days
daily_deaths_def1 The number of new deaths per day according to the (narrowest) COVID death definition No. 1. #
daily_deaths_def2 Number of new deaths per day according to COVID death definition No. 2. #
daily_deaths_def3 Number of new deaths per day according to COVID death definition No. 3. #
daily_deaths_all Daily deaths in Lithuania (by date of death)
incidence + Number of new COVID cases per day (laboratory or physician confirmed)
cumulative_totals + Total number of COVID cases (laboratory or physician confirmed)
active_de_jure Declared number of people with COVID
active_sttstcl Statistical number of people with COVID
dead_cases The number of dead persons who were ever diagnosed with COVID

https://osp.stat.gov.lt

Lithuania 51

recovered_de_jure Declared number of recovered live persons
recovered_sttstcl Statistical number of recovered live persons
map_colors $ The map colour-coding for the municipality, based on averages of test positivity and incidence per capita

* The municipality_code is discarded since it does not correspond to ISO-3166:2 codes used
elsewhere in the package.

+ These fields are renamed but returned unmodified.
Lithuania offers counts according to three different definitions of whether a death is attributable
to COVID-19.

$ This field is not recalculated for counties and is deleted.

Criteria for attributing deaths

Beginning in February 2021 the OSP publishes death counts according to three different criteria,
from most to least strictly attributed to COVID-19.

1. of Number of deaths with COVID-19 (coronavirus infection) as the leading cause of death.
The indicator is calculated by summing all registered records of medical form E106 (unique
persons), in which the main cause of death is IPC disease codes U07.1 or U07.2. Deaths due
to external causes are not included (ICD disease codes are V00-Y36, or Y85-Y87, or Y89, or
S00-T79, or T89-T98).

2. with Number of deaths with COVID-19 (coronavirus infection) of any cause of death. The
indicator is calculated by summing all registered records of the medical form E106 (unique
persons), in which the ICD disease codes U07.1, U07.2, U07.3, U07.4, U07.5 are indicated
as the main, direct, intermediate cause of death or other important pathological condition,
or identified as related to COVID-19 disease (coronavirus infection). Deaths due to external
causes are not included (ICD disease codes are V00-Y36, or Y85-Y87, or Y89, or S00-T79,
or T89-T98).

3. after Number of deaths from any cause of COVID-19 or COVID-19 deaths due to non-
external causes within 28 days. The indicator is calculated by summing all registered records
of the medical form E106 (unique persons), in which the ICD disease codes U07.1, U07.2,
U07.3, U07.4, U07 are indicated as the main, direct, intermediate cause of death or other
important pathological condition, or identified as related to COVID-19 disease (coronavirus
infection) and all records of medical form E106 (unique individuals) where the person died
within the last 28 days after receiving a positive diagnostic response to the SARS-CoV-2 test
or had an entry in medical form E025 with ICD disease code U07.2 or U07.1. Deaths due to
external causes are not included (ICD disease codes are V00-Y36, or Y85-Y87, or Y89, or
S00-T79, or T89-T98).

The number of deaths reported in the last day is preliminary and increases by about 20-40% in a
few days. Such a "delay" in the data is natural: for example, for those who died last night, a death
certificate is likely to be issued as soon as this report is published this morning.

De jure and statistical counts

Beginning in February 2021 the OSP makes statistical estimates of the number of recovered and
active cases, since review of the data showed that some cases individuals still considered as active
cases had recovered, but not documented or registered as such.

52 Lithuania

These are listed as by the OSP as active_de_jure and recovered_de_jure (officially still con-
sidered sick), and active_sttstcl and recovered_sttstcl (an estimate of how many of these
are still ill).

Super class

covidregionaldata::DataClass -> Lithuania

Public fields

origin name of origin to fetch data for

supported_levels A list of supported levels.

supported_region_names A list of region names in order of level.

supported_region_codes A list of region codes in order of level.

common_data_urls List of named links to raw data that are common across levels.

source_data_cols existing columns within the raw data

source_text Plain text description of the source of the data

source_url Website address for explanation/introduction of the data

death_definition which criteria of deaths attributed to COVID to use

recovered_definition whether to use the official counts of recovered cases or the statistical
estimates provided by OSP

all_osp_fields whether to return all the data vectors provided by OSP

national_data whether to return data rows for national results

Methods

Public methods:
• Lithuania$set_region_codes()

• Lithuania$clean_common()

• Lithuania$clean_level_1()

• Lithuania$new()

• Lithuania$clone()

Method set_region_codes(): Set up a table of region codes for clean data

Usage:
Lithuania$set_region_codes()

Method clean_common(): Common data cleaning for both levels

Usage:
Lithuania$clean_common()

Method clean_level_1(): Lithuania Specific County Level Data Cleaning
Aggregates data to the level 1 (county) regional level. Data is provided by the source at the level
2 (municipality) regional level.

Lithuania 53

Usage:
Lithuania$clean_level_1()

Method new(): Initialize the country

Usage:
Lithuania$new(
death_definition = "of",
recovered_definition = "official",
all_osp_fields = FALSE,
national_data = FALSE,
...

)

Arguments:
death_definition A character string. Determines which criteria for attributing deaths to

COVID is used. Should be "of", "with", or "after". Can also be "daily_deaths_def1",
"daily_deaths_def2", or "daily_deaths_def3". (Defaults to "of", the strictest defini-
tion.)

recovered_definition A character string. Determines whether the count of officially-recovered
(de jure) cases is used, or the statistical estimate provided by OSP. Should be "official"
or "statistical". (Defaults to "official".)

all_osp_fields A logical scalar. Should all the meaningful data fields from the OSP source
be returned? (Defaults FALSE)

national_data A logical scalar. Should national values be returned? (Defaults FALSE)
... Parameters passed to DataClass() initalize

Method clone(): The objects of this class are cloneable with this method.

Usage:
Lithuania$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Source

https://hub.arcgis.com/datasets/d49a63c934be4f65a93b6273785a8449_0

See Also

Subnational data sources Belgium, Brazil, Canada, Colombia, Covid19DataHub, Cuba, Estonia,
France, Germany, Google, India, Italy, JHU, Mexico, Netherlands, SouthAfrica, Switzerland,
UK, USA

Examples

Not run:
region <- Lithuania$new(verbose = TRUE, steps = TRUE, get = TRUE)

End(Not run)

https://hub.arcgis.com/datasets/d49a63c934be4f65a93b6273785a8449_0

54 make_github_workflow

lithuania_codes Region Codes for Lithuania Dataset.

Description

The region codes for Lithuania

Usage

lithuania_codes

Format

An object of class spec_tbl_df (inherits from tbl_df, tbl, data.frame) with 61 rows and 6
columns.

Value

A tibble of region codes and related information, including ISO 3166:2 codes for counties (apskritis)
and municipalities (savivaldybe), and noting which municipalities are city municipalities or regional
municipalities.

make_github_workflow Create github action for a given source

Description

Makes a github workflow yaml file for a given source to be used as an action to check the data as a
github action.

Usage

make_github_workflow(
source,
workflow_path = paste0(".github/workflows/", source, ".yaml"),
cron = "36 12 * * *"

)

Arguments

source character_array The name of the class to create the workflow for.

workflow_path character_array The path to where the workflow file should be saved. Defaults
to ’.github/workflows/’

cron character_array the cron time to run the tests, defaults to 36 12 * * *, following
the minute, hour, day(month), month and day(week) format.

make_new_data_source 55

make_new_data_source Create new country class for a given source

Description

Makes a new regional or national country class with the name provided as the source. This forms
a basic template for the user to fill in with the specific field values and cleaning functions required.
This also creates a github workflow file for the same country.

Usage

make_new_data_source(
source,
type = "subnational",
newfile_path = paste0("R/", source, ".R")

)

Arguments

source character_array The name of the class to create. Must start with a capital letter
(be upper camel case or an acronym in all caps such as WHO).

type character_array the type of class to create, subnational or National defaults to
subnational. Regional classes are individual countries, such as UK, Italy, In-
dia, etc. These inherit from DataClass, whilst national classes are sources for
multiple countries data, such as JRC, JHU, Google, etc. These inherit from
CountryDataClass.

newfile_path character_array the place to save the class file

message_verbose Wrapper for message

Description

A wrapper for message that only prints output when verbose = TRUE.

Usage

message_verbose(verbose = TRUE, ...)

Arguments

verbose Logical, defaults to TRUE. Should verbose processing messages and warnings be
returned.

... Additional arguments passed to message.

56 Mexico

Mexico Meixco Class for downloading, cleaning and processing notification
data

Description

Information for downloading, cleaning and processing COVID-19 region data for Mexico.

Notes on region codes:

Level 1 codes = ISO-3166-2, source: https://en.wikipedia.org/wiki/ISO_3166-2:MX

Level 2 codes = INEGI Mexican official statistics geocoding, source: raw data

Level 1 INEGI codes are the first 2 characters of Level 2 INEGI codes

Super class

covidregionaldata::DataClass -> Mexico

Public fields

origin name of origin to fetch data for

supported_levels A list of supported levels.

supported_region_names A list of region names in order of level.

supported_region_codes A list of region codes in order of level.

common_data_urls List of named links to raw data.

level_data_urls List of named links to raw data that are level specific.

source_data_cols existing columns within the raw data

source_text Plain text description of the source of the data

source_url Website address for explanation/introduction of the data

Methods

Public methods:

• Mexico$set_region_codes()

• Mexico$download()

• Mexico$clean_common()

• Mexico$clean_level_1()

• Mexico$clean_level_2()

• Mexico$clone()

Method set_region_codes(): Set up a table of region codes for clean data

Usage:
Mexico$set_region_codes()

Mexico 57

Method download(): Data download() function for Mexico data. This replaces the generic
download function in DataClass(). To get the latest data use a PHP script from the website.

Usage:

Mexico$download()

Method clean_common(): Common Data Cleaning

Usage:

Mexico$clean_common()

Method clean_level_1(): Estados Level Data Cleaning

Usage:

Mexico$clean_level_1()

Method clean_level_2(): Municipality Level Data Cleaning

Usage:

Mexico$clean_level_2()

Method clone(): The objects of this class are cloneable with this method.

Usage:

Mexico$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Source

https://datos.covid-19.conacyt.mx/

See Also

Subnational data sources Belgium, Brazil, Canada, Colombia, Covid19DataHub, Cuba, Estonia,
France, Germany, Google, India, Italy, JHU, Lithuania, Netherlands, SouthAfrica, Switzerland,
UK, USA

Examples

Not run:
region <- Mexico$new(verbose = TRUE, steps = TRUE, get = TRUE)
region$return()

End(Not run)

https://datos.covid-19.conacyt.mx/

58 Netherlands

mexico_codes Region Codes for Mexico Dataset.

Description

Details of the region codes used for the Mexico dataset.

Usage

mexico_codes

Format

An object of class spec_tbl_df (inherits from tbl_df, tbl, data.frame) with 2489 rows and 4
columns.

Value

A nested tibble of region codes and related information.

Netherlands Netherlands Class for downloading, cleaning and processing notifica-
tion data

Description

Class for downloading, cleaning and processing COVID-19 sub-regional data for the Netherlands,
provided by RVIM (English: National Institute for Public Health and the Environment). This data
contains number of newly reported cases (that have tested positive), number of newly reported hos-
pital admissions and number of newly reported deaths going back to 27/02/2020. Data is provided
at both the province and municipality level.

Super class

covidregionaldata::DataClass -> Netherlands

Public fields

origin name of origin to fetch data for
supported_levels A list of supported levels.
supported_region_names A list of region names in order of level.
supported_region_codes A list of region codes in order of level.
common_data_urls List of named links to raw data. The first, and only entry, is be named main.
source_data_cols existing columns within the raw data
source_text Plain text description of the source of the data
source_url Website address for explanation/introduction of the data

Netherlands 59

Methods

Public methods:
• Netherlands$set_region_codes()

• Netherlands$clean_common()

• Netherlands$clean_level_1()

• Netherlands$clone()

Method set_region_codes(): Set up a table of region codes for clean data

Usage:
Netherlands$set_region_codes()

Method clean_common(): Common cleaning steps to be applied to raw data, regardless of level
(province or municipality) for raw Netherlands data.

Usage:
Netherlands$clean_common()

Method clean_level_1(): Netherlands specific province level data cleaning. Takes the data
cleaned by clean_common and aggregates it to the Province level (level 1).

Usage:
Netherlands$clean_level_1()

Method clone(): The objects of this class are cloneable with this method.

Usage:
Netherlands$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Source

https://data.rivm.nl/geonetwork/srv/dut/catalog.search#/metadata/5f6bc429-1596-490e-8618-1ed8fd768427?
tab=relations

See Also

Subnational data sources Belgium, Brazil, Canada, Colombia, Covid19DataHub, Cuba, Estonia,
France, Germany, Google, India, Italy, JHU, Lithuania, Mexico, SouthAfrica, Switzerland,
UK, USA

Examples

Not run:
region <- Netherlands$new(verbose = TRUE, steps = TRUE, get = TRUE)
region$return()

End(Not run)

https://data.rivm.nl/geonetwork/srv/dut/catalog.search#/metadata/5f6bc429-1596-490e-8618-1ed8fd768427?tab=relations
https://data.rivm.nl/geonetwork/srv/dut/catalog.search#/metadata/5f6bc429-1596-490e-8618-1ed8fd768427?tab=relations

60 process_internal

process_internal Internal Shared Regional Dataset Processing

Description

Internal shared regional data cleaning designed to be called by process.

Usage

process_internal(
clean_data,
level,
group_vars,
totals = FALSE,
localise = TRUE,
verbose = TRUE,
process_fns

)

Arguments

clean_data The clean data for a class, e.g. Italy$data$clean

level The level of the data, e.g. ’level_1_region’

group_vars Grouping variables, used to for grouping and to localise names. It is assumed
that the first entry indicates the main region variable and the second indicates
the geocode for this variable.

totals Logical, defaults to FALSE. If ‘TRUE“, returns totalled data per region up to
today’s date. If FALSE, returns the full dataset stratified by date and region.

localise Logical, defaults to TRUE. Should region names be localised.

verbose Logical, defaults to TRUE. Should verbose processing messages and warnings be
returned.

process_fns array, additional functions to be called after default processing steps

See Also

Functions used in the processing pipeline run_default_processing_fns(), run_optional_processing_fns()

region_dispatch 61

region_dispatch Control Grouping Variables used in process_internal

Description

Controls the grouping variables used in process_internal based on the supported regions present
in the class.

Usage

region_dispatch(level, all_levels, region_names, region_codes)

Arguments

level A character string indicating the current level.

all_levels A character vector indicating all the levels supported.

region_names A named list of region names named after the levels supported.

region_codes A named list of region codes named after the levels supported.

reset_cache Reset Cache and Update all Local Data

Description

Reset Cache and Update all Local Data

Usage

reset_cache()

Value

Null

62 run_default_processing_fns

return_data Control data return

Description

Controls data return for get_reigonal_data and get_national_data

Usage

return_data(obj, class = FALSE)

Arguments

obj A Class based on a DataClass

class Logical, defaults to FALSE. If TRUE returns the DataClass object rather than
a tibble or a list of tibbles. Overrides steps.

run_default_processing_fns

Default processing steps to run

Description

The default processing steps to which are always run. Runs on clean data

Usage

run_default_processing_fns(data)

Arguments

data A data table

See Also

Functions used in the processing pipeline process_internal(), run_optional_processing_fns()

run_optional_processing_fns 63

run_optional_processing_fns

Optional processing steps to run

Description

user supplied processing steps which are run after default steps

Usage

run_optional_processing_fns(data, process_fns)

Arguments

data A data table

process_fns array, additional functions to be called after default processing steps

See Also

Functions used in the processing pipeline process_internal(), run_default_processing_fns()

set_negative_values_to_zero

Set negative data to 0

Description

Set data values to 0 if they are negative in a dataset. Data in the datasets should always be > 0.

Usage

set_negative_values_to_zero(data)

Arguments

data A data frame

Value

A data frame with all relevant data > 0.

See Also

Optional processing function totalise_data()

64 SouthAfrica

SouthAfrica SouthAfrica Class for downloading, cleaning and processing notifica-
tion data

Description

Information for downloading, cleaning and processing COVID-19 region data for South Africa.

Super class

covidregionaldata::DataClass -> SouthAfrica

Public fields

origin name of origin to fetch data for

supported_levels A list of supported levels.

supported_region_names A list of region names in order of level.

supported_region_codes A list of region codes in order of level.

common_data_urls List of named links to raw data.

source_data_cols existing columns within the raw data

source_text Plain text description of the source of the data

source_url Website address for explanation/introduction of the data

Methods

Public methods:
• SouthAfrica$set_region_codes()

• SouthAfrica$clean_common()

• SouthAfrica$clone()

Method set_region_codes(): Set up a table of region codes for clean data

Usage:
SouthAfrica$set_region_codes()

Method clean_common(): Province level data cleaning

Usage:
SouthAfrica$clean_common()

Method clone(): The objects of this class are cloneable with this method.

Usage:
SouthAfrica$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

start_using_memoise 65

Source

https://github.com/dsfsi/covid19za/

See Also

Subnational data sources Belgium, Brazil, Canada, Colombia, Covid19DataHub, Cuba, Estonia,
France, Germany, Google, India, Italy, JHU, Lithuania, Mexico, Netherlands, Switzerland,
UK, USA

Examples

Not run:
region <- SouthAfrica$new(verbose = TRUE, steps = TRUE, get = TRUE)
region$return()

End(Not run)

start_using_memoise Add useMemoise to options

Description

Adds useMemoise to options meaning memoise is used when reading data in.

Usage

start_using_memoise(path = tempdir(), verbose = TRUE)

Arguments

path Path to cache directory, defaults to a temporary directory.

verbose Logical, defaults to TRUE. Should verbose processing messages and warnings be
returned.

stop_using_memoise Stop using useMemoise

Description

Sets useMemoise in options to NULL, meaning memoise isn’t used when reading data in

Usage

stop_using_memoise()

https://github.com/dsfsi/covid19za/

66 Switzerland

Switzerland Switzerland Class for downloading, cleaning and processing notifica-
tion data

Description

Information for downloading, cleaning and processing COVID-19 region data for Switzerland

Super class

covidregionaldata::DataClass -> Switzerland

Public fields

origin name of origin to fetch data for

supported_levels A list of supported levels.

supported_region_names A list of region names in order of level.

supported_region_codes A list of region codes in order of level.

common_data_urls List of named links to raw data. This url links to a JSON file which provides
the addresses for the most recently-updated CSV files, which are then downloaded.

source_data_cols existing columns within the raw data

source_text Plain text description of the source of the data

source_url Website address for explanation/introduction of the data

Methods

Public methods:
• Switzerland$set_region_codes()

• Switzerland$download()

• Switzerland$clean_common()

• Switzerland$clone()

Method set_region_codes(): Set up a table of region codes for clean data

Usage:
Switzerland$set_region_codes()

Method download(): Download function to get raw data. Downloads the updated list of CSV
files using download_JSON, filters that to identify the required CSV files, then uses the parent
method download to download the CSV files.

Usage:
Switzerland$download()

Method clean_common(): Switzerland specific state level data cleaning

Usage:

test_cleaning 67

Switzerland$clean_common()

Method clone(): The objects of this class are cloneable with this method.

Usage:
Switzerland$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Subnational data sources Belgium, Brazil, Canada, Colombia, Covid19DataHub, Cuba, Estonia,
France, Germany, Google, India, Italy, JHU, Lithuania, Mexico, Netherlands, SouthAfrica,
UK, USA

Examples

Not run:
region <- Switzerland$new(verbose = TRUE, steps = TRUE, get = TRUE)
region$return()

End(Not run)

test_cleaning Test clean method works correctly

Description

Test data can be cleaned properly. The clean method is invoked to generate clean data. This data
is checked to ensure it is a data.frame, is not empty, has at least two columns and that columns are
clean by calling expect_clean_cols. Also tests that avaliable_regions() are not NA and they
are all characters.

Usage

test_cleaning(DataClass_obj)

Arguments

DataClass_obj The R6Class object to perform checks on. Must be a DataClass or DataClass
child object.

See Also

Functions used for testing data is cleaned and processed correctly expect_clean_cols(), expect_columns_contain_data(),
expect_processed_cols(), test_download_JSON(), test_download(), test_processing(),
test_return()

68 test_download_JSON

test_download Test download method works correctly

Description

Test data can be downloaded if download = TRUE, or a requested snapshot file is not found, and
store a snap shot in the snapshot_dir. If an existing snapshot file is found then load this data to
use in future tests

Usage

test_download(DataClass_obj, download, snapshot_path)

Arguments

DataClass_obj The R6Class object to perform checks on. Must be a DataClass or DataClass
child object.

download Logical check to download or use a snapshot of the data

snapshot_path character_array the path to save the downloaded snapshot to.

See Also

Functions used for testing data is cleaned and processed correctly expect_clean_cols(), expect_columns_contain_data(),
expect_processed_cols(), test_cleaning(), test_download_JSON(), test_processing(),
test_return()

test_download_JSON Test download method for JSON files works correctly

Description

Test data can be downloaded if download = TRUE, or a requested snapshot file is not found, and
store a snap shot in the snapshot_dir. If an existing snapshot file is found then load this data to
use in future tests

Usage

test_download_JSON(DataClass_obj, download, snapshot_path)

Arguments

DataClass_obj The R6Class object to perform checks on. Must be a DataClass or DataClass
child object.

download Logical check to download or use a snapshot of the data

snapshot_path character_array the path to save the downloaded snapshot to.

test_processing 69

See Also

Functions used for testing data is cleaned and processed correctly expect_clean_cols(), expect_columns_contain_data(),
expect_processed_cols(), test_cleaning(), test_download(), test_processing(), test_return()

test_processing Test process method works correctly

Description

Test data can be processed correctly using the process method. process is invoked to generate
processed data which is then checked to ensure it is a data.frame, which is not empty, has at least 2
columns and calls expect_processed_columns to check each column types.

Usage

test_processing(DataClass_obj, all = FALSE)

Arguments

DataClass_obj The R6Class object to perform checks on. Must be a DataClass or DataClass
child object.

all Logical. Run tests with all settings (TRUE) or with those defined in the current
class instance (FALSE). Defaults to FALSE.

See Also

Functions used for testing data is cleaned and processed correctly expect_clean_cols(), expect_columns_contain_data(),
expect_processed_cols(), test_cleaning(), test_download_JSON(), test_download(), test_return()

test_return Test return method works correctly

Description

Test data can be returned correctly using the return method. return is invoked to generate returned
data which is then checked to ensure it is a data.frame, not empty and has at least 2 columns. Each
column is then checked to ensure it contains data and is not just composed of NAs.

Usage

test_return(DataClass_obj)

Arguments

DataClass_obj The R6Class object to perform checks on. Must be a DataClass or DataClass
child object.

70 UK

See Also

Functions used for testing data is cleaned and processed correctly expect_clean_cols(), expect_columns_contain_data(),
expect_processed_cols(), test_cleaning(), test_download_JSON(), test_download(), test_processing()

totalise_data Get totals data given the time series data.

Description

Get totals data given the time series data.

Usage

totalise_data(data)

Arguments

data A data table

Value

A data table, totalled up

See Also

Optional processing function set_negative_values_to_zero()

UK United Kingdom Class for downloading, cleaning and processing no-
tification data.

Description

Extracts daily COVID-19 data for the UK, stratified by region and nation. Additional options for
this class are: to return subnational English regions using NHS region boundaries instead of PHE
boundaries (nhsregions = TRUE), a release date to download from (release_date) and a geographical
resolution (resolution).

Super class

covidregionaldata::DataClass -> UK

UK 71

Public fields

origin name of origin to fetch data for

supported_levels A list of supported levels.

supported_region_names A list of region names in order of level.

supported_region_codes A list of region codes in order of level.

common_data_urls List of named links to raw data. The first, and only entry, is be named main.

level_data_urls List of named links to raw data that are level specific.

source_data_cols existing columns within the raw data

source_text Plain text description of the source of the data

source_url Website address for explanation/introduction of the data

query_filters Set what filters to use to query the data

nhsregions Whether to include NHS regions in the data

release_date The release date for the data

resolution The resolution of the data to return

authority_data The raw data for creating authority lookup tables

Methods

Public methods:
• UK$set_region_codes()

• UK$download()

• UK$clean_level_1()

• UK$clean_level_2()

• UK$new()

• UK$download_filter()

• UK$set_filters()

• UK$download_nhs_regions()

• UK$add_nhs_regions()

• UK$specific_tests()

• UK$clone()

Method set_region_codes(): Specific function for getting region codes for UK .

Usage:
UK$set_region_codes()

Method download(): UK specific download() function.

Usage:
UK$download()

Method clean_level_1(): Region Level Data Cleaning

Usage:
UK$clean_level_1()

72 UK

Method clean_level_2(): Level 2 Data Cleaning

Usage:
UK$clean_level_2()

Method new(): Initalize the UK Class

Usage:
UK$new(nhsregions = FALSE, release_date = NULL, resolution = "utla", ...)

Arguments:

nhsregions Return subnational English regions using NHS region boundaries instead of PHE
boundaries.

release_date Date data was released. Default is to extract latest release. Dates should be in
the format "yyyy-mm-dd".

resolution "utla" (default) or "ltla", depending on which geographical resolution is preferred
... Optional arguments passed to DataClass() initalize.

Examples:

\dontrun{
UK$new(
level = 1, localise = TRUE,
verbose = True, steps = FALSE,
nhsregions = FALSE, release_date = NULL,
resolution = "utla"

)
}

Method download_filter(): Helper function for downloading data API

Usage:
UK$download_filter(filter)

Arguments:

filter region filters

Method set_filters(): Set filters for UK data api query.

Usage:
UK$set_filters()

Method download_nhs_regions(): Download NHS data for level 1 regions Separate NHS data
is available for "first" admissions, excluding readmissions. This is available for England + English
regions only. Data are available separately for the periods 2020-08-01 to 2021-04-06, and 2021-
04-07 - present. See: https://www.england.nhs.uk/statistics/statistical-work-areas/
covid-19-hospital-activity/ Section 2, "2. Estimated new hospital cases"

Usage:
UK$download_nhs_regions()

Returns: nhs data.frame of nhs regions

https://www.england.nhs.uk/statistics/statistical-work-areas/covid-19-hospital-activity/
https://www.england.nhs.uk/statistics/statistical-work-areas/covid-19-hospital-activity/

UK 73

Method add_nhs_regions(): Add NHS data for level 1 regions Separate NHS data is avail-
able for "first" admissions, excluding readmissions. This is available for England + English
regions only. See: https://www.england.nhs.uk/statistics/statistical-work-areas/
covid-19-hospital-activity/ Section 2, "2. Estimated new hospital cases"

Usage:
UK$add_nhs_regions(clean_data, nhs_data)

Arguments:

clean_data Cleaned UK covid-19 data
nhs_data NHS region data

Method specific_tests(): Specific tests for UK data. In addition to generic tests ran by
DataClass$test() data for NHS regions are downloaded and ran through the same generic
checks (test_cleaning, test_processing, test_return). If download = TRUE or a snapshot file is
not found, the nhs data is downloaded and saved to the snapshot location provided. If an exist-
ing snapshot file is found then this data is used in the next tests. Tests data can be downloaded,
cleaned, processed and returned. Designed to be ran from test and not ran directly.

Usage:
UK$specific_tests(
self_copy,
download = FALSE,
all = FALSE,
snapshot_path = "",
...

)

Arguments:

self_copy R6class the object to test.
download logical. To download the data (TRUE) or use a snapshot (FALSE). Defaults to

FALSE.
all logical. Run tests with all settings (TRUE) or with those defined in the current class in-

stance (FALSE). Defaults to FALSE.
snapshot_path character_array the path to save the downloaded snapshot to. Works on the

snapshot path constructed by test but adds
... Additional parameters to pass to specific_tests

Method clone(): The objects of this class are cloneable with this method.

Usage:
UK$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Source

https://coronavirus.data.gov.uk/details/download

https://coronavirus.data.gov.uk/details/download

https://www.england.nhs.uk/statistics/statistical-work-areas/covid-19-hospital-activity/
https://www.england.nhs.uk/statistics/statistical-work-areas/covid-19-hospital-activity/
https://coronavirus.data.gov.uk/details/download
https://coronavirus.data.gov.uk/details/download

74 UK

See Also

Subnational data sources Belgium, Brazil, Canada, Colombia, Covid19DataHub, Cuba, Estonia,
France, Germany, Google, India, Italy, JHU, Lithuania, Mexico, Netherlands, SouthAfrica,
Switzerland, USA

Examples

Not run:
setup a data cache
start_using_memoise()

download, clean and process level 1 UK data with hospital admissions
region <- UK$new(level = "1", nhsregions = TRUE)
region$return()

initialise level 2 data
utla <- UK$new(level = "2")

download UTLA data
utla$download()

clean UTLA data
utla$clean()

inspect available level 1 regions
utla$available_regions(level = "1")

filter data to the East of England
utla$filter("East of England")

process UTLA data
utla$process()

return processed and filtered data
utla$return()

inspect all data steps
utla$data

End(Not run)

--
Method `UK$new`
--

Not run:
UK$new(
level = 1, localise = TRUE,
verbose = True, steps = FALSE,
nhsregions = FALSE, release_date = NULL,
resolution = "utla"

)

uk_codes 75

End(Not run)

uk_codes Region Codes for UK Dataset.

Description

The uk authority look table for providing region codes used for level 2 UK data.

Usage

uk_codes

Format

An object of class tbl_df (inherits from tbl, data.frame) with 429 rows and 4 columns.

Value

A tibble of region codes and related information.

USA USA Class for downloading, cleaning and processing notification data

Description

Information for downloading, cleaning and processing COVID-19 region data for USA.

Super class

covidregionaldata::DataClass -> USA

Public fields

origin name of origin to fetch data for

supported_levels A list of supported levels.

supported_region_names A list of region names in order of level.

supported_region_codes A list of region codes in order of level.

level_data_urls List of named links to raw data that are level specific.

source_data_cols existing columns within the raw data

source_text Plain text description of the source of the data

source_url Website address for explanation/introduction of the data

76 USA

Methods

Public methods:

• USA$set_region_codes()

• USA$clean_level_1()

• USA$clean_level_2()

• USA$clone()

Method set_region_codes(): Set up a table of region codes for clean data

Usage:
USA$set_region_codes()

Method clean_level_1(): State Level Data Cleaning

Usage:
USA$clean_level_1()

Method clean_level_2(): County Level Data Cleaning

Usage:
USA$clean_level_2()

Method clone(): The objects of this class are cloneable with this method.

Usage:
USA$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Source

https://github.com/nytimes/covid-19-data/

See Also

Subnational data sources Belgium, Brazil, Canada, Colombia, Covid19DataHub, Cuba, Estonia,
France, Germany, Google, India, Italy, JHU, Lithuania, Mexico, Netherlands, SouthAfrica,
Switzerland, UK

Examples

Not run:
region <- USA$new(verbose = TRUE, steps = TRUE, get = TRUE)
region$return()

End(Not run)

https://github.com/nytimes/covid-19-data/

vietnam_codes 77

vietnam_codes Region Codes for Vietnam Dataset.

Description

The region codes for Viet Nam

Usage

vietnam_codes

Format

An object of class data.frame with 63 rows and 2 columns.

Value

A tibble of region codes and related information.

WHO R6 Class containing specific attributes and methods for World Health
Organisation data

Description

Information for downloading, cleaning and processing COVID-19 region data from the World
Health Organisation

Super classes

covidregionaldata::DataClass -> covidregionaldata::CountryDataClass -> WHO

Public fields

origin name of origin to fetch data for

supported_levels A list of supported levels.

supported_region_names A list of region names in order of level.

supported_region_codes A list of region codes in order of level.

common_data_urls List of named links to raw data. The first, and only entry, is be named main.

source_data_cols existing columns within the raw data

source_text Plain text description of the source of the data

source_url Website address for explanation/introduction of the data

78 WHO

Methods

Public methods:
• WHO$clean_common()

• WHO$return()

• WHO$specific_tests()

• WHO$clone()

Method clean_common(): WHO specific data cleaning

Usage:
WHO$clean_common()

Method return(): Specific return settings for the WHO dataset.

Usage:
WHO$return()

Method specific_tests(): Run additional tests on WHO data. Tests that there is only one
row per country. Designed to be ran from test and not ran directly.

Usage:
WHO$specific_tests(self_copy, ...)

Arguments:

self_copy R6class the object to test
... Extra params passed to specific download functions

Method clone(): The objects of this class are cloneable with this method.

Usage:
WHO$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Source

https://covid19.who.int/

See Also

National data sources Covid19DataHub, ECDC, Google, JHU, JRC

Examples

Not run:
national <- WHO$new(verbose = TRUE, steps = TRUE, get = TRUE)
national$return()

End(Not run)

https://covid19.who.int/

Index

∗ aggregations
Covid19DataHub, 14
Google, 37
JHU, 45

∗ compulsory_processing
add_extra_na_cols, 3
calculate_columns_from_existing_data,

8
complete_cumulative_columns, 12
fill_empty_dates_with_na, 28

∗ datasets
all_country_data, 4
colombia_codes, 12
france_codes, 30
JHU_codes, 47
lithuania_codes, 54
mexico_codes, 58
uk_codes, 75
vietnam_codes, 77

∗ dataset
Belgium, 4
Brazil, 6
Canada, 8
Colombia, 10
Covid19DataHub, 14
Cuba, 17
ECDC, 24
Estonia, 25
France, 29
Germany, 31
Google, 37
India, 39
Italy, 43
JHU, 45
JRC, 47
Lithuania, 50
Mexico, 56
Netherlands, 58
SouthAfrica, 64

Switzerland, 66
UK, 70
USA, 75
WHO, 77

∗ interface
CountryDataClass, 13
DataClass, 18
get_available_datasets, 32
get_national_data, 33
get_regional_data, 35
initialise_dataclass, 41

∗ national
Covid19DataHub, 14
ECDC, 24
Google, 37
JHU, 45
JRC, 47
WHO, 77

∗ optional_processing
set_negative_values_to_zero, 63
totalise_data, 70

∗ processing
process_internal, 60
run_default_processing_fns, 62
run_optional_processing_fns, 63

∗ subnational
Belgium, 4
Brazil, 6
Canada, 8
Colombia, 10
Covid19DataHub, 14
Cuba, 17
Estonia, 25
France, 29
Germany, 31
Google, 37
India, 39
Italy, 43
JHU, 45

79

80 INDEX

Lithuania, 50
Mexico, 56
Netherlands, 58
SouthAfrica, 64
Switzerland, 66
UK, 70
USA, 75

∗ tests
expect_clean_cols, 27
expect_columns_contain_data, 27
expect_processed_cols, 28
test_cleaning, 67
test_download, 68
test_download_JSON, 68
test_processing, 69
test_return, 69

∗ utility
all_country_data, 4
check_level, 10
csv_reader, 16
download_excel, 23
glue_level, 37
json_reader, 49
make_github_workflow, 54
make_new_data_source, 55
message_verbose, 55
process_internal, 60
region_dispatch, 61
reset_cache, 61
return_data, 62
run_default_processing_fns, 62
run_optional_processing_fns, 63
start_using_memoise, 65
stop_using_memoise, 65

add_extra_na_cols, 3, 8, 13, 29
all_country_data, 4

Belgium, 4, 7, 9, 11, 15, 18, 26, 30, 32, 39, 41,
44, 46, 53, 57, 59, 65, 67, 74, 76

Brazil, 6, 6, 9, 11, 15, 18, 26, 30, 32, 39, 41,
44, 46, 53, 57, 59, 65, 67, 74, 76

calculate_columns_from_existing_data,
4, 8, 13, 29

Canada, 6, 7, 8, 11, 15, 18, 26, 30, 32, 39, 41,
44, 46, 53, 57, 59, 65, 67, 74, 76

check_level, 10

Colombia, 6, 7, 9, 10, 15, 18, 26, 30, 32, 39,
41, 44, 46, 53, 57, 59, 65, 67, 74, 76

colombia_codes, 12
complete_cumulative_columns, 4, 8, 12, 29
CountryDataClass, 13, 23, 33, 34, 36, 42
Covid19DataHub, 6, 7, 9, 11, 14, 18, 25, 26,

30, 32, 39, 41, 44, 46, 49, 53, 57, 59,
65, 67, 74, 76, 78

covidregionaldata::CountryDataClass,
14, 24, 37, 45, 47, 77

covidregionaldata::DataClass, 4, 6, 8, 10,
13, 14, 17, 24, 25, 29, 31, 37, 40, 43,
45, 47, 52, 56, 58, 64, 66, 70, 75, 77

csv_reader, 16
Cuba, 6, 7, 9, 11, 15, 17, 26, 30, 32, 39, 41, 44,

46, 53, 57, 59, 65, 67, 74, 76

DataClass, 14, 18, 33, 34, 36, 42
DataClass(), 13, 53, 57, 72
download_excel, 23

ECDC, 15, 24, 39, 46, 49, 78
ECDC(), 34
Estonia, 6, 7, 9, 11, 15, 18, 25, 30, 32, 39, 41,

44, 46, 53, 57, 59, 65, 67, 74, 76
expect_clean_cols, 27, 27, 28, 67–70
expect_columns_contain_data, 27, 27, 28,

67–70
expect_processed_cols, 27, 28, 67–70

fill_empty_dates_with_na, 4, 8, 13, 28
France, 6, 7, 9, 11, 15, 18, 26, 29, 32, 39, 41,

44, 46, 53, 57, 59, 65, 67, 74, 76
france_codes, 30

Germany, 6, 7, 9, 11, 15, 18, 26, 30, 31, 39, 41,
44, 46, 53, 57, 59, 65, 67, 74, 76

get_available_datasets, 14, 23, 32, 34, 36,
42

get_national_data, 14, 23, 33, 33, 36, 42
get_regional_data, 14, 23, 33, 34, 35, 42
glue_level, 37
Google, 6, 7, 9, 11, 15, 18, 25, 26, 30, 32, 37,

41, 44, 46, 49, 53, 57, 59, 65, 67, 74,
76, 78

Google(), 34

India, 6, 7, 9, 11, 15, 18, 26, 30, 32, 39, 39,
44, 46, 53, 57, 59, 65, 67, 74, 76

INDEX 81

initialise_dataclass, 14, 23, 33, 34, 36, 41
Italy, 6, 7, 9, 11, 15, 18, 26, 30, 32, 39, 41,

43, 46, 53, 57, 59, 65, 67, 74, 76
Italy(), 36

JHU, 6, 7, 9, 11, 15, 18, 25, 26, 30, 32, 39, 41,
44, 45, 49, 53, 57, 59, 65, 67, 74, 76,
78

JHU(), 34
JHU_codes, 47
JRC, 15, 25, 39, 46, 47, 78
json_reader, 49

Lithuania, 6, 7, 9, 11, 15, 18, 26, 30, 32, 39,
41, 44, 46, 50, 57, 59, 65, 67, 74, 76

lithuania_codes, 54

make_github_workflow, 54
make_new_data_source, 55
message_verbose, 55
Mexico, 6, 7, 9, 11, 15, 18, 26, 30, 32, 39, 41,

44, 46, 53, 56, 59, 65, 67, 74, 76
mexico_codes, 58

Netherlands, 6, 7, 9, 11, 15, 18, 26, 30, 32,
39, 41, 44, 46, 53, 57, 58, 65, 67, 74,
76

process_internal, 60, 62, 63

region_dispatch, 61
reset_cache, 61
return_data, 62
run_default_processing_fns, 60, 62, 63
run_optional_processing_fns, 60, 62, 63

set_negative_values_to_zero, 63, 70
SouthAfrica, 6, 7, 9, 11, 15, 18, 26, 30, 32,

39, 41, 44, 46, 53, 57, 59, 64, 67, 74,
76

start_using_memoise, 65
stop_using_memoise, 65
Switzerland, 6, 7, 9, 11, 15, 18, 26, 30, 32,

39, 41, 44, 46, 53, 57, 59, 65, 66, 74,
76

test_cleaning, 27, 28, 67, 68–70
test_download, 27, 28, 67, 68, 69, 70
test_download_JSON, 27, 28, 67, 68, 68, 69,

70

test_processing, 27, 28, 67–69, 69, 70
test_return, 27, 28, 67–69, 69
totalise_data, 63, 70

UK, 6, 7, 9, 11, 15, 18, 26, 30, 32, 39, 41, 44,
46, 53, 57, 59, 65, 67, 70, 76

UK(), 36
uk_codes, 75
USA, 6, 7, 9, 11, 15, 18, 26, 30, 32, 39, 41, 44,

46, 53, 57, 59, 65, 67, 74, 75

vietnam_codes, 77

WHO, 15, 25, 39, 46, 49, 77
WHO(), 34

	add_extra_na_cols
	all_country_data
	Belgium
	Brazil
	calculate_columns_from_existing_data
	Canada
	check_level
	Colombia
	colombia_codes
	complete_cumulative_columns
	CountryDataClass
	Covid19DataHub
	csv_reader
	Cuba
	DataClass
	download_excel
	ECDC
	Estonia
	expect_clean_cols
	expect_columns_contain_data
	expect_processed_cols
	fill_empty_dates_with_na
	France
	france_codes
	Germany
	get_available_datasets
	get_national_data
	get_regional_data
	glue_level
	Google
	India
	initialise_dataclass
	Italy
	JHU
	JHU_codes
	JRC
	json_reader
	Lithuania
	lithuania_codes
	make_github_workflow
	make_new_data_source
	message_verbose
	Mexico
	mexico_codes
	Netherlands
	process_internal
	region_dispatch
	reset_cache
	return_data
	run_default_processing_fns
	run_optional_processing_fns
	set_negative_values_to_zero
	SouthAfrica
	start_using_memoise
	stop_using_memoise
	Switzerland
	test_cleaning
	test_download
	test_download_JSON
	test_processing
	test_return
	totalise_data
	UK
	uk_codes
	USA
	vietnam_codes
	WHO
	Index

