--- title: "Gaussian Process implementation details" output: rmarkdown::html_vignette: toc: true number_sections: true bibliography: library.bib csl: https://raw.githubusercontent.com/citation-style-language/styles/master/apa-numeric-superscript-brackets.csl vignette: > %\VignetteIndexEntry{Gaussian Process implementation details} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` # Overview We make use of Gaussian Processes in several places in `EpiNow2`. For example, the default model for `estimate_infections()` uses a Gaussian Process to model the 1st order difference on the log scale of the reproduction number. This vignette describes the implementation details of the approximate Gaussian Process used in `EpiNow2`. # Definition The single dimension Gaussian Processes ($\mathrm{GP}_t$) we use can be written as \begin{equation} \mathcal{GP}(\mu(t), k(t, t')) \end{equation} where $\mu(t)$ and $k(t,t')$ are the mean and covariance functions, respectively. In our case as set out above, we have \begin{equation} \mu(t) \equiv 0 \\ k(t,t') = k(|t - t'|) = k(\Delta t) \end{equation} with the following choices available for the kernel $k$ ## Matérn 3/2 covariance kernel (the default) \begin{equation} k(\Delta t) = \alpha^2 \left( 1 + \frac{\sqrt{3} \Delta t}{l} \right) \exp \left( - \frac{\sqrt{3} \Delta t}{l}\right) \end{equation} with $l>0$ and $\alpha > 0$ the length scale and magnitude, respectively, of the kernel. Note that here and later we use a slightly different definition of $\alpha$ compared to Riutort-Mayol et al. [@approxGP], where this is defined as our $\alpha^2$. ## Squared exponential kernel \begin{equation} k(\Delta t) = \alpha^2 \exp \left( - \frac{1}{2} \frac{(\Delta t^2)}{l^2} \right) \end{equation} ## Ornstein-Uhlenbeck (Matérn 1/2) kernel \begin{equation} k(\Delta t) = \alpha^2 \exp{\left( - \frac{\Delta t}{2 l^2} \right)} \end{equation} ## Matérn 5/2 covariance kernel \begin{equation} k(\Delta t) = \alpha \left( 1 + \frac{\sqrt{5} \Delta t}{l} + \frac{5}{3} \left(\frac{\Delta t}{l} \right)^2 \right) \exp \left( - \frac{\sqrt{5} \Delta t}{l}\right) \end{equation} # Hilbert space approximation In order to make our models computationally tractable, we approximate the Gaussian Process using a Hilbert space approximation to the Gaussian Process [@approxGP], centered around mean zero. \begin{equation} \mathcal{GP}(0, k(\Delta t)) \approx \sum_{j=1}^m \left(S_k(\sqrt{\lambda_j}) \right)^\frac{1}{2} \phi_j(t) \beta_j \end{equation} with $m$ the number of basis functions to use in the approximation, which we calculate from the number of time points $t_\mathrm{GP}$ to which the Gaussian Process is being applied (rounded up to give an integer value), as is recommended [@approxGP]. \begin{equation} m = b t_\mathrm{GP} \end{equation} and values of $\lambda_j$ given by \begin{equation} \lambda_j = \left( \frac{j \pi}{2 L} \right)^2 \end{equation} where $L$ is a positive number termed boundary condition, and $\beta_{j}$ are regression weights with standard normal prior \begin{equation} \beta_j \sim \mathcal{Normal}(0, 1) \end{equation} The function $S_k(x)$ is the spectral density relating to a particular covariance function $k$. In the case of the Matérn kernel of order $\nu$ this is given by \begin{equation} S_k(x) = \alpha^2 \frac{2 \sqrt{\pi} \Gamma(\nu + 1/2) (2\nu)^\nu}{\Gamma(\nu) \rho^{2 \nu}} \left( \frac{2 \nu}{\rho^2} + \omega^2 \right)^{-\left( \nu + \frac{1}{2}\right )} \end{equation} For $\nu = 3 / 2$ (the default in `EpiNow2`) this simplifies to \begin{equation} S_k(\omega) = \alpha^2 \frac{4 \left(\sqrt{3} / \rho \right)^3}{\left(\left(\sqrt{3} / \rho\right)^2 + \omega^2\right)^2} = \left(\frac{2 \alpha \left(\sqrt{3} / \rho \right)^{\frac{3}{2}}}{\left(\sqrt{3} / \rho\right)^2 + \omega^2} \right)^2 \end{equation} For $\nu = 1 / 2$ it is \begin{equation} S_k(\omega) = \alpha^2 \frac{2}{\rho \left(1 / \rho^2 + \omega^2\right)} \end{equation} and for $\nu = 5 / 2$ it is \begin{equation} S_k(\omega) = \alpha^2 \frac{3 \left(\sqrt{5} / \rho \right)^5}{2 \left(\left(\sqrt{5} / \rho\right)^2 + \omega^2\right)^3} \end{equation} In the case of a squared exponential the spectral kernel density is given by \begin{equation} S_k(\omega) = \alpha^2 \sqrt{2\pi} \rho \exp \left( -\frac{1}{2} \rho^2 \omega^2 \right) \end{equation} The functions $\phi_{j}(x)$ are the eigenfunctions of the Laplace operator, \begin{equation} \phi_j(t) = \frac{1}{\sqrt{L}} \sin\left(\sqrt{\lambda_j} (t^* + L)\right) \end{equation} with time rescaled linearly to be between -1 and 1, \begin{equation} t^* = \frac{t - \frac{1}{2}t_\mathrm{GP}}{\frac{1}{2}t_\mathrm{GP}} \end{equation} Relevant priors are \begin{align} \alpha &\sim \mathcal{Normal}(\mu_\alpha, \sigma_{\alpha}) \\ \rho &\sim \mathcal{LogNormal} (\mu_\rho, \sigma_\rho)\\ \end{align} with $\rho$ additionally constrained to be between $\rho_\mathrm{min}$ and $\rho_\mathrm{max}$, $\mu_{\rho}$ and $\sigma_\rho$ calculated from given mean $m_{\rho}$ and standard deviation $s_\rho$, and default values (all of which can be changed by the user): \begin{align} b &= 0.2 \\ L &= 1.5 \\ m_\rho &= 21 \\ s_\rho &= 7 \\ \rho_\mathrm{min} &= 0\\ \rho_\mathrm{max} &= 60\\ \mu_\alpha &= 0\\ \sigma_\alpha &= 0.01 \end{align} # References